1,515
15
Essay, 11 pages (3000 words)

Regulation of mhc class ii-peptide complex expression by ubiquitination

Major histocompatibility complex class II molecules (MHC-II) function by presenting processed antigens, derived primarily from exogenous sources, to CD4 + T-lymphocytes. MHC-II molecules thereby are critical for the initiation of the antigen-specific immune response. MHC-II is constitutively expressed by immune cells including B cells, monocytes, macrophages, and dendritic cells (DCs) and even non-hematopoietic cells can express MHC-II under inflammatory conditions. While each of these MHC-II-bearing cell types function as “ professional” antigen presenting cells (APCs), DCs have received much attention as APCs since it is these APCs that are able to stimulate naïve antigen-specific CD4 + T cells. Tissue-resident DCs have often been referred to as the “ sentinels of the immune system,” and it is their job to continuously sample their microenvironment by internalizing extracellular fluid and generating peptide-MHC-II complexes (pMHC-II) that can potentially interact with antigen-specific T cells ( 1 ). While resting (immature) DCs do express considerable amounts of pMHC-II on their surface, stimulation of DCs by a variety of inflammatory stimuli results in increased expression of pMHC-II at the plasma membrane by at least two mechanisms: (1) by increasing antigen proteolysis/peptide binding to MHC-II ( 2 , 3 ) and (2) by promoting pMHC-II movement from intracellular antigen processing compartments to the cell surface ( 4 , 5 ). Activation of DCs transiently increases MHC-II synthesis and increases macropinocytosis. However, within hours of the activation signal CIITA synthesis (and thus MHC-II synthesis) is severely reduced and macropinocytosis is terminated ( 6 , 7 ). Together, these processes poise the recently activated DC to generate large amounts of pMHC-II with antigens derived from pathogens at the site of infection, thereby enhancing their ability to stimulate antigen-specific CD4 + T cells.

At steady-state, the rate of generation of pMHC-II complexes in immature DCs is equal to the rate of pMHC-II degradation. It is regulation of pMHC-II degradation that is the topic of this mini-review. Recently, it has been shown that ubiquitination participates in pMHC-II degradation ( 8 , 9 ). MHC-II is ubiquitinated on a single conserved lysine in the cytoplasmic domain of the MHC-II β-chain present in mouse I-A and I-E molecules as well as human HLA-DR molecules, heretofore referred to as K225. The membrane-associated RING-CH-domain containing E3 ubiquitin ligase March-I is the sole E3 ligase responsible for the ubiquitination MHC-II in B cells and is the primary E3 ligase responsible for ubiquitination of MHC-II in DCs ( 10 ). March-I expression is highly enriched in secondary lymphoid tissues such as spleen and lymph node ( 11 ) and appears to be especially prominent in APCs such as B cells ( 10 ), DCs ( 12 14 ), and monocytes ( 15 ).

Expression of March-I leads to the down-regulation of several surface molecules including MHC-II, CD86, and transferrin receptor (TfR) ( 11 , 16 ). In March-I-deficient B cells, MHC-II expression is much higher than in control B cells, and this effect was mediated by ubiquitination of K225 in the I-A β-chain ( 10 ). Gain-of-function experiments in which March-I was overexpressed in MHC-II-expressing HeLa-CIITA cells or human monocyte-derived DCs (MoDC) resulted in profound down-regulation of surface HLA-DR level in these cells ( 14 , 16 ). Our own loss-of-function experiments revealed that expression of MHC-II was significantly higher on immature DCs isolated from March-I KO mice than on DCs isolated from WT mice. Essentially identical results were obtained using DCs isolated from MHC-II K 255 R ubiquitination-mutant mice, demonstrating that ubiquitination of MHC-II K225 by March-I regulates MHC-II surface expression ( 14 ).

Whereas March-I is constitutively expressed in resting professional APCs, March-I can be induced or repressed by different stimuli both in vitro and in vivo . Infection of mouse macrophages with Francisella tularensis induces the ubiquitin-dependent degradation of MHC-II by promoting IL-10-dependent March-I expression ( 17 ). IL-10 up-regulate March-I expression and MHC-II ubiquitination not only in mouse macrophages but also in human monocytes and mouse B cells ( 18 , 19 ). Curiously, although most MHC-II-expressing APCs constitutively express March-I, interferon-gamma-treatment of monocytes, which leads to MHC-II expression, does not result in March-I expression unless the cells are also treated with IL-10, highlighting the complexity of March-I expression in APCs. Curiously, the ability of IL-10 to downregulate MHC-II expression in DCs is due to induction of March-I ( 15 , 20 ). Perhaps more important than the up-regulation of basal March-I expression, March-I mRNA expression is significantly reduced when resting APCs are stimulated with toll-like receptor (TLR) signals such as LPS, PGN, poly (I: C) ( 16 , 21 ). The March-I protein has a half-life of less than 30 min, potentially regulated by auto-ubiquitination ( 12 ), therefore the termination of March-I mRNA expression leads to a rapid drop in March-I protein levels ( 16 ). The reduction of March-I protein expression upon DC activation has profound consequences for MHC-II ubiquitination, for upon DC activation MHC-II ubiquitination is dramatically reduced ( 8 11 , 21 ). As will be discussed below, it is the activation-induced termination of March-I expression that primarily regulates MHC-II surface expression in DCs.

The available evidence shows that ubiquitination by March-I is an important regulator of MHC-II degradation. Simple overexpression of March-I dramatically reduces the survival of MHC-II molecules in HeLa-CIITA cells and in B cells ( 10 , 14 , 16 ). In addition, studies in mutant mice have shown that surface MHC-II expression is higher and the half-life of MHC-II is significantly prolonged in B cells isolated from March-I KO mice as compared to WT mice ( 10 ). A similar role for human March-I in regulation of HLA-DR expression MoDCs has also been described ( 16 ). We have shown that surface pMHC-II complexes on March-I KO DCs or K 255 R ubiquitination-mutant immature DCs are considerably more stable than those in WT DCs and kinetic analyses demonstrated that ubiquitination directly affects the rate of degradation of surface pMHC-II ( 14 ). Limiting lysosomal proteolysis delays March-I-induced MHC-II degradation in DCs ( 9 ), suggesting that ubiquitinated MHC-II is degraded in late endosomes/lysosomes in these cell types.

In immature DCs, a relatively large pool of MHC-II is present in intracellular antigen processing compartments. During TLR-mediated DC activation many of these MHC-II molecules traffic to and accumulate on the plasma membrane ( 3 ). Maturation of DCs not only inhibits fluid-phase macropinocytosis in DCs ( 22 , 23 ), but also inhibits the kinetics of MHC-II endocytosis from the cell surface in human MoDCs ( 6 ). The findings that MHC-II is (1) ubiquitinated in immature DCs, (2) internalizes efficiently in immature DCs, and (3) accumulates intracellularly in immature DCs (but not mature DCs) has led to speculation that ubiquitination regulates MHC-II endocytosis in DCs. It has been shown that anti-MHC-II mAb accumulate intracellularly in WT immature DCs but not in K 255 R ubiquitination-mutant immature DCs ( 8 , 9 , 14 ), a finding that is consistent with the hypothesis that ubiquitination regulates MHC-II endocytosis.

However, the role of ubiquitination in enhancing the kinetics of MHC-II internalization remains controversial. De Gassart et al. have reported that MHC-II internalization was reduced by 50% in MoDCs in which March-I expression was reduced by transfected siRNA ( 16 ). By contrast, our own studies in both human and mouse DCs have shown that while MHC-II endocytosis is slightly more rapid in immature DCs than in mature DCs, there is no difference in the kinetics of MHC-II endocytosis in DCs from WT, March-I KO, and MHC-II K 255 R ubiquitination-mutant mice ( 14 ). Furthermore, analysis of March-I-deficient B cells revealed that the internalization rate of MHC-II in March-I KO B cells was similar to that in WT B cells, demonstrating that MHC-II ubiquitination is not required for internalization of MHC-II in B cells ( 10 ). We have also examined the kinetics of endocytosis of MHC-II in HeLa-CIITA cells expressing (or not) March-I. In agreement with our results in DCs, we found no difference in the rate of MHC-II endocytosis in HeLa-CIIA cells expressing GFP alone or GFP-March-I, demonstrating that ubiquitination of MHC-II does not affect the kinetics of MHC-II endocytosis in DCs ( 14 ). These data showing that ubiquitination does not affect MHC-II endocytosis rate are also consistent with similar types of experiments showing that ubiquitination profoundly affects the intracellular distribution of fibroblast growth factor receptor 1 and epidermal growth factor receptor but does so without affecting the kinetics of receptor endocytosis ( 24 , 25 ).

Despite the significant effects of March-I on pMHC-II ubiquitination and pMHC-II localization, we do not yet have a clear understanding of how ubiquitination actually regulates the stability of pMHC-II complexes. Recently it has been found that the MHC-II polyubiquitin chain length is different in DCs and in B cells and that longer polyubiquitin chains (such as those present in DCs) promote more efficient MHC-II lysosomal targeting ( 26 ). How polyubiquitin chain length is regulated in APCs (whether by diminished ubiquitination or enhanced activity of deubiquitinating enzymes) remains to be determined. Clearly ubiquitination of MHC-II regulates MHC-II surface expression, and while our own data argues that ubiquitination does not directly affect pMHC-II endocytosis rate, the possibility exists that ubiquitination affects MHC-II surface expression by regulating the ability of pMHC-II to recycle back to the plasma membrane after endocytosis. pMHC-II complexes continuously internalize and recycle from early endosomes to the plasma membrane and back again ( 27 ). While analysis of internalization rate data has suggested that pMHC-II recycling rates are different in immature DCs and mature DCs ( 6 ), we have been unable to find direct experimental data to support this theory. We have recently shown that internalized pMHC-II enters into elongated Arf6 + Rab35 + tubular recycling endosomes and efficiently recycles back to the plasma membrane in HeLa-CIITA cells as well as in APCs ( 28 ). Although a direct link between pMHC-II recycling and ubiquitination has not been established, it is curious to note that overexpression of March-I promotes the re-distribution of MHC-II from early endocytic compartments to terminal lysosomes ( 16 ) and also that MHC-II co-localizes with recycling TfR + endosomes more in March-I-deficient B cells as compared to WT B cells ( 10 ). Furthermore, overexpression of the related MARCH family member MARCH-8 alters the itinerary of proteins internalized by clathrin-independent endocytosis from recycling endosomes to terminal lysosomes ( 29 ), leading to the possibility that ubiquitination of pMHC-II by March-I serves to limit recycling and promote lysosomal degradation of pMHC-II complexes.

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

Our work cited in this mini-review was supported by the Intramural Research Program of the National Institutes of Health.

References

1. Trombetta ES, Mellman I. Cell biology of antigen processing in vitro and in vivo. Annu Rev Immunol (2005)23 : 975–1028. doi: 10. 1146/annurev. immunol. 22. 012703. 104538

2. Turley SJ, Inaba K, Garrett WS, Ebersold M, Unternaehrer J, Steinman RM, et al. Transport of peptide-MHC class II complexes in developing dendritic cells. Science (2000)288 : 522–7. doi: 10. 1126/science. 288. 5465. 522

||

3. Inaba K, Turley S, Iyoda T, Yamaide F, Shimoyama S, Reis e Sousa C, et al. The formation of immunogenic major histocompatibility complex class II-peptide ligands in lysosomal compartments of dendritic cells is regulated by inflammatory stimuli. J Exp Med (2000)191 : 927–36. doi: 10. 1084/jem. 191. 6. 927

||

4. Boes M, Cerny J, Massol R, Op den Brouw M, Kirchhausen T, Chen J, et al. T-cell engagement of dendritic cells rapidly rearranges MHC class II transport. Nature (2002)418 : 983–8. doi: 10. 1038/nature01004

||

5. Chow A, Toomre D, Garrett W, Mellman I. Dendritic cell maturation triggers retrograde MHC class II transport from lysosomes to the plasma membrane. Nature (2002)418 : 988–94. doi: 10. 1038/nature01006

||

6. Cella M, Engering A, Pinet V, Pieters J, Lanzavecchia A. Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature (1997)388 : 782–7. doi: 10. 1038/42030

||

7. West MA, Wallin RP, Matthews SP, Svensson HG, Zaru R, Ljunggren HG, et al. Enhanced dendritic cell antigen capture via toll-like receptor-induced actin remodeling. Science (2004)305 : 1153–7. doi: 10. 1126/science. 1099153

||

8. van Niel G, Wubbolts R, Ten Broeke T, Buschow SI, Ossendorp FA, Melief CJ, et al. Dendritic cells regulate exposure of MHC class II at their plasma membrane by oligoubiquitination. Immunity (2006)25 : 885–94. doi: 10. 1016/j. immuni. 2006. 11. 001

||

9. Shin JS, Ebersold M, Pypaert M, Delamarre L, Hartley A, Mellman I. Surface expression of MHC class II in dendritic cells is controlled by regulated ubiquitination. Nature (2006)444 : 115–8. doi: 10. 1038/nature05261

||

10. Matsuki Y, Ohmura-Hoshino M, Goto E, Aoki M, Mito-Yoshida M, Uematsu M, et al. Novel regulation of MHC class II function in B cells. EMBO J (2007)26 : 846–54. doi: 10. 1038/sj. emboj. 7601556

||

11. Bartee E, Mansouri M, Hovey Nerenberg BT, Gouveia K, Fruh K. Downregulation of major histocompatibility complex class I by human ubiquitin ligases related to viral immune evasion proteins. J Virol (2004)78 : 1109–20. doi: 10. 1128/JVI. 78. 3. 1109-1120. 2004

||

12. Jabbour M, Campbell EM, Fares H, Lybarger L. Discrete domains of MARCH1 mediate its localization, functional interactions, and posttranscriptional control of expression. J Immunol (2009)183 : 6500–12. doi: 10. 4049/jimmunol. 0901521

||

13. Ishido S, Matsuki Y, Goto E, Kajikawa M, Ohmura-Hoshino M. MARCH-I: a new regulator of dendritic cell function. Mol Cells (2010)29 : 229–32. doi: 10. 1007/s10059-010-0051-x

||

14. Walseng E, Furuta K, Bosch B, Weih KA, Matsuki Y, Bakke O, et al. Ubiquitination regulates MHC class II-peptide complex retention and degradation in dendritic cells. Proc Natl Acad Sci U S A (2010)107 : 20465–70. doi: 10. 1073/pnas. 1010990107

||

15. Thibodeau J, Bourgeois-Daigneault MC, Huppe G, Tremblay J, Aumont A, Houde M, et al. Interleukin-10-induced MARCH1 mediates intracellular sequestration of MHC class II in monocytes. Eur J Immunol (2008)38 : 1225–30. doi: 10. 1002/eji. 200737902

||

16. De Gassart A, Camosseto V, Thibodeau J, Ceppi M, Catalan N, Pierre P, et al. MHC class II stabilization at the surface of human dendritic cells is the result of maturation-dependent MARCH I down-regulation. Proc Natl Acad Sci U S A (2008)105 : 3491–6. doi: 10. 1073/pnas. 0708874105

||

17. Wilson JE, Katkere B, Drake JR. Francisella tularensis induces ubiquitin-dependent major histocompatibility complex class II degradation in activated macrophages. Infect Immun (2009)77 : 4953–65. doi: 10. 1128/IAI. 00844-09

||

18. Bourgeois-Daigneault MC, Thibodeau J. Autoregulation of MARCH1 expression by dimerization and autoubiquitination. J Immunol (2012)188 : 4959–70. doi: 10. 4049/jimmunol. 1102708

||

19. Galbas T, Steimle V, Lapointe R, Ishido S, Thibodeau J. MARCH1 down-regulation in IL-10-activated B cells increases MHC class II expression. Cytokine (2012)59 : 27–30. doi: 10. 1016/j. cyto. 2012. 03. 015

||

20. Tze LE, Horikawa K, Domaschenz H, Howard DR, Roots CM, Rigby RJ, et al. CD83 increases MHC II and CD86 on dendritic cells by opposing IL-10-driven MARCH1-mediated ubiquitination and degradation. J Exp Med (2011)208 : 149–65. doi: 10. 1084/jem. 20092203

||

21. Walseng E, Furuta K, Goldszmid RS, Weih KA, Sher A, Roche PA. Dendritic cell activation prevents MHC class II ubiquitination and promotes MHC class II survival regardless of the activation stimulus. J Biol Chem (2010)285 : 41749–54. doi: 10. 1074/jbc. M110. 157586

||

22. Garrett WS, Chen LM, Kroschewski R, Ebersold M, Turley S, Trombetta S, et al. Developmental control of endocytosis in dendritic cells by Cdc42. Cell (2000)102 : 325–34. doi: 10. 1016/S0092-8674(00)00038-6

||

23. Sallusto F, Cella M, Danieli C, Lanzavecchia A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med (1995)182 : 389–400. doi: 10. 1084/jem. 182. 2. 389

24. Huang F, Goh LK, Sorkin A. EGF receptor ubiquitination is not necessary for its internalization. Proc Natl Acad Sci U S A (2007)104 : 16904–9. doi: 10. 1073/pnas. 0707416104

||

25. Haugsten EM, Malecki J, Bjorklund SM, Olsnes S, Wesche J. Ubiquitination of fibroblast growth factor receptor 1 is required for its intracellular sorting but not for its endocytosis. Mol Biol Cell (2008)19 : 3390–403. doi: 10. 1091/mbc. E07-12-1219

||

26. Ma JK, Platt MY, Eastham-Anderson J, Shin JS, Mellman I. MHC class II distribution in dendritic cells and B cells is determined by ubiquitin chain length. Proc Natl Acad Sci U S A (2012)109 : 8820–7. doi: 10. 1073/pnas. 1202977109

||

27. Reid PA, Watts C. Cycling of cell-surface MHC glycoproteins through primaquine-sensitive intracellular compartments. Nature (1990)346 : 655–7. doi: 10. 1038/346655a0

||

28. Walseng E, Bakke O, Roche PA. Major histocompatibility complex class II-peptide complexes internalize using a clathrin- and dynamin-independent endocytosis pathway. J Biol Chem (2008)283 : 14717–27. doi: 10. 1074/jbc. M801070200

||

29. Eyster CA, Cole NB, Petersen S, Viswanathan K, Fruh K, Donaldson JG. MARCH ubiquitin ligases alter the itinerary of clathrin-independent cargo from recycling to degradation. Mol Biol Cell (2011)22 : 3218–30. doi: 10. 1091/mbc. E10-11-0874

||

Thank's for Your Vote!
Regulation of mhc class ii-peptide complex expression by ubiquitination. Page 1
Regulation of mhc class ii-peptide complex expression by ubiquitination. Page 2
Regulation of mhc class ii-peptide complex expression by ubiquitination. Page 3
Regulation of mhc class ii-peptide complex expression by ubiquitination. Page 4
Regulation of mhc class ii-peptide complex expression by ubiquitination. Page 5
Regulation of mhc class ii-peptide complex expression by ubiquitination. Page 6
Regulation of mhc class ii-peptide complex expression by ubiquitination. Page 7
Regulation of mhc class ii-peptide complex expression by ubiquitination. Page 8
Regulation of mhc class ii-peptide complex expression by ubiquitination. Page 9

This work, titled "Regulation of mhc class ii-peptide complex expression by ubiquitination" was written and willingly shared by a fellow student. This sample can be utilized as a research and reference resource to aid in the writing of your own work. Any use of the work that does not include an appropriate citation is banned.

If you are the owner of this work and don’t want it to be published on AssignBuster, request its removal.

Request Removal
Cite this Essay

References

AssignBuster. (2022) 'Regulation of mhc class ii-peptide complex expression by ubiquitination'. 17 August.

Reference

AssignBuster. (2022, August 17). Regulation of mhc class ii-peptide complex expression by ubiquitination. Retrieved from https://assignbuster.com/regulation-of-mhc-class-ii-peptide-complex-expression-by-ubiquitination/

References

AssignBuster. 2022. "Regulation of mhc class ii-peptide complex expression by ubiquitination." August 17, 2022. https://assignbuster.com/regulation-of-mhc-class-ii-peptide-complex-expression-by-ubiquitination/.

1. AssignBuster. "Regulation of mhc class ii-peptide complex expression by ubiquitination." August 17, 2022. https://assignbuster.com/regulation-of-mhc-class-ii-peptide-complex-expression-by-ubiquitination/.


Bibliography


AssignBuster. "Regulation of mhc class ii-peptide complex expression by ubiquitination." August 17, 2022. https://assignbuster.com/regulation-of-mhc-class-ii-peptide-complex-expression-by-ubiquitination/.

Work Cited

"Regulation of mhc class ii-peptide complex expression by ubiquitination." AssignBuster, 17 Aug. 2022, assignbuster.com/regulation-of-mhc-class-ii-peptide-complex-expression-by-ubiquitination/.

Get in Touch

Please, let us know if you have any ideas on improving Regulation of mhc class ii-peptide complex expression by ubiquitination, or our service. We will be happy to hear what you think: [email protected]