1,564
17
Essay, 4 pages (1000 words)

Nicorandil c8h9n3o4 structure

Contents

  • Bio Activity:
Molecular Formula C 8 H 9 N 3 O 4
Average mass 211. 175 Da
Density 1. 3±0. 1 g/cm 3
Boiling Point 456. 7±25. 0 °C at 760 mmHg
Flash Point 230. 0±23. 2 °C
Molar Refractivity 50. 4±0. 3 cm 3
Polarizability 20. 0±0. 5 10 -24 cm 3
Surface Tension 55. 3±3. 0 dyne/cm
Molar Volume 158. 7±3. 0 cm 3
  • Experimental data
  • Predicted – ACD/Labs
  • Predicted – EPISuite
  • Predicted – ChemAxon
  • Predicted – Mcule
  • Experimental Physico-chemical Properties
    • Experimental Melting Point:

      90 °CTCIN0837
      92. 5 °CJean-Claude Bradley Open Melting Point Dataset22728
      92-93 °CLabNetworkLN00222789
    • Experimental Flash Point:

      230 °CLabNetworkLN00222789
    • Experimental Solubility:

      DMSO 40 mg/mL; Water 17 mg/mLMedChem ExpressHY-B0341
      DMSO: 25mg/mLMedChem ExpressHY-B0341
      Soluble to 20 mM in waterTocris Bioscience2147
  • Predicted Physico-chemical Properties
    • Predicted Melting Point:

      90 °CTCI
      90 °CTCIN0837
  • Miscellaneous
    • Target Organs:

      Potassium Channel activatorTargetMolT0075
    • Drug Status:

      approvedBIONET-Key OrganicsHS-0049
    • Bio Activity:

      Antioxidant; Zerenex Molecular[ZBioX-0564]
      Inward rectifier Potassium ChannelsTocris Bioscience2147
      Ion ChannelsTocris Bioscience2147
      Kir6 (KATP) channel opener and NO donorTocris Bioscience2147
      Kir6 (KATP) channel opener and NO donor; antianginal agent. Preferentially activates SUR2B- versus SUR2A-containing Kir6 channels (EC50 values are 10 and > 500 ? M respectively) and causes 1. 6-fold increase in cardiac eNOS expression. Displays coronary and peripheral vasodilatory properties, reduces both pre- and after-load, and increases coronary blood flow. Also displays cardioprotective effects, possibly through ischemic preconditioning. Tocris Bioscience2147
      Kir6 (KATP) channel opener and NO donor; antianginal agent. Preferentially activates SUR2B- versus SUR2A-containing Kir6 channels (EC50 values are 10 and > 500 ? M respectively) and causes 1. 6-fold increase in cardiac eNOS expression. Displays coronary and peripheral vasodilatory properties, reduces both pre- and after-load, and increases coronary blood flow. Also displays cardioprotective effects, possibly through ischemic preconditioning. Tocris Bioscience2147
      Membrane Tranporter/Ion ChannelMedChem ExpressHY-B0341
      Membrane Tranporter/Ion Channel; MedChem ExpressHY-B0341
      Membrane Transporter/Ion ChannelTargetMolT0075
      Nicorandil is potassium channel activator. MedChem Express
      Nicorandil is potassium channel activator.; Target: Potassium Channel; Nicorandil is a vasodilatory drug used to treat angina. MedChem ExpressHY-B0341
      Nicorandil is potassium channel activator.; Target: Potassium ChannelNicorandil is a vasodilatory drug used to treat angina. Nicorandil stimulates guanylate cyclase to increase formation of cyclic GMP (cGMP). cGMP activates protein kinase G (PKG) which phosphorylates and inhibits GTPase RhoA and decreases Rho-kinase activity. Reduced Rho-kinase activity permits an increase in myosin phosphatase activity, decreasing the calcium sensitivity of the smooth muscle. PKG also activates the sarcolemma calcium pump to remove activating calcium. PKG acts on K+ channels to promote K+ efflux and the ensuing hyperpolarization inhibits voltage-gated calcium channels. Overall, this leads to relaxation of the smooth muscle and coronary vasodilation [1, 2]. MedChem ExpressHY-B0341
      Potassium ChannelTargetMolT0075
      Potassium ChannelsTocris Bioscience2147
      Potassiun ChannelMedChem ExpressHY-B0341

Predicted data is generated using the ACD/Labs Percepta Platform – PhysChem Module

Density: 1. 3±0. 1 g/cm 3
Boiling Point: 456. 7±25. 0 °C at 760 mmHg
Vapour Pressure: 0. 0±1. 1 mmHg at 25°C
Enthalpy of Vaporization: 71. 7±3. 0 kJ/mol
Flash Point: 230. 0±23. 2 °C
Index of Refraction: 1. 548
Molar Refractivity: 50. 4±0. 3 cm 3
#H bond acceptors: 7
#H bond donors: 1
#Freely Rotating Bonds: 5
#Rule of 5 Violations: 0
ACD/LogP: 0. 72
ACD/LogD (pH 5. 5): 0. 93
ACD/BCF (pH 5. 5): 2. 97
ACD/KOC (pH 5. 5): 75. 69
ACD/LogD (pH 7. 4): 0. 93
ACD/BCF (pH 7. 4): 2. 99
ACD/KOC (pH 7. 4): 76. 16
Polar Surface Area: 97 Å 2
Polarizability: 20. 0±0. 5 10 -24 cm 3
Surface Tension: 55. 3±3. 0 dyne/cm
Molar Volume: 158. 7±3. 0 cm 3

Predicted data is generated using the US Environmental Protection Agency’s EPISuite™

 Log Octanol-Water Partition Coef (SRC): Log Kow (KOWWIN v1. 67 estimate) = 0. 43Boiling Pt, Melting Pt, Vapor Pressure Estimations (MPBPWIN v1. 42): Boiling Pt (deg C): 376. 76 (Adapted Stein & Brown method)Melting Pt (deg C): 143. 02 (Mean or Weighted MP)VP(mm Hg, 25 deg C): 6. 76E-006 (Modified Grain method)MP (exp database): 92. 5 deg CSubcooled liquid VP: 3. 03E-005 mm Hg (25 deg C, Mod-Grain method)Water Solubility Estimate from Log Kow (WSKOW v1. 41): Water Solubility at 25 deg C (mg/L): 1. 643e+004log Kow used: 0. 43 (estimated)no-melting pt equation usedWater Sol Estimate from Fragments: Wat Sol (v1. 01 est) = 3. 9664e+005 mg/LECOSAR Class Program (ECOSAR v0. 99h): Class(es) found: Neutral OrganicsHenrys Law Constant (25 deg C) [HENRYWIN v3. 10]: Bond Method : 2. 28E-014 atm-m3/moleGroup Method: IncompleteHenrys LC [VP/WSol estimate using EPI values]: 1. 143E-010 atm-m3/moleLog Octanol-Air Partition Coefficient (25 deg C) [KOAWIN v1. 10]: Log Kow used: 0. 43 (KowWin est)Log Kaw used: -12. 031 (HenryWin est)Log Koa (KOAWIN v1. 10 estimate): 12. 461Log Koa (experimental database): NoneProbability of Rapid Biodegradation (BIOWIN v4. 10): Biowin1 (Linear Model) : 0. 7026Biowin2 (Non-Linear Model) : 0. 7433Expert Survey Biodegradation Results: Biowin3 (Ultimate Survey Model): 2. 4641 (weeks-months)Biowin4 (Primary Survey Model) : 3. 7297 (days-weeks )MITI Biodegradation Probability: Biowin5 (MITI Linear Model) : 0. 3087Biowin6 (MITI Non-Linear Model): 0. 1412Anaerobic Biodegradation Probability: Biowin7 (Anaerobic Linear Model): 0. 5795Ready Biodegradability Prediction: NOHydrocarbon Biodegradation (BioHCwin v1. 01): Structure incompatible with current estimation method! Sorption to aerosols (25 Dec C)[AEROWIN v1. 00]: Vapor pressure (liquid/subcooled): 0. 00404 Pa (3. 03E-005 mm Hg)Log Koa (Koawin est ): 12. 461Kp (particle/gas partition coef. (m3/ug)): Mackay model : 0. 000743 Octanol/air (Koa) model: 0. 71 Fraction sorbed to airborne particulates (phi): Junge-Pankow model : 0. 0261 Mackay model : 0. 0561 Octanol/air (Koa) model: 0. 983 Atmospheric Oxidation (25 deg C) [AopWin v1. 92]: Hydroxyl Radicals Reaction: OVERALL OH Rate Constant = 1. 5091 E-12 cm3/molecule-secHalf-Life = 7. 088 Days (12-hr day; 1. 5E6 OH/cm3)Half-Life = 85. 051 HrsOzone Reaction: No Ozone Reaction EstimationFraction sorbed to airborne particulates (phi): 0. 0411 (Junge, Mackay)Note: the sorbed fraction may be resistant to atmospheric oxidationSoil Adsorption Coefficient (PCKOCWIN v1. 66): Koc : 254. 6Log Koc: 2. 406 Aqueous Base/Acid-Catalyzed Hydrolysis (25 deg C) [HYDROWIN v1. 67]: Rate constants can NOT be estimated for this structure! Bioaccumulation Estimates from Log Kow (BCFWIN v2. 17): Log BCF from regression-based method = 0. 500 (BCF = 3. 162)log Kow used: 0. 43 (estimated)Volatilization from Water: Henry LC: 2. 28E-014 atm-m3/mole (estimated by Bond SAR Method)Half-Life from Model River: 3. 732E+010 hours (1. 555E+009 days)Half-Life from Model Lake : 4. 071E+011 hours (1. 696E+010 days)Removal In Wastewater Treatment: Total removal: 1. 86 percentTotal biodegradation: 0. 09 percentTotal sludge adsorption: 1. 77 percentTotal to Air: 0. 00 percent(using 10000 hr Bio P, A, S)Level III Fugacity Model: Mass Amount Half-Life Emissions(percent) (hr) (kg/hr)Air 3. 15e-007 170 1000 Water 44. 7 900 1000 Soil 55. 2 1. 8e+003 1000 Sediment 0. 088 8. 1e+003 0 Persistence Time: 996 hr 

Click to predict properties on the Chemicalize site

  • 1-Click Docking
  • 1-Click Scaffold Hop
Thank's for Your Vote!
Nicorandil c8h9n3o4 structure. Page 1
Nicorandil c8h9n3o4 structure. Page 2
Nicorandil c8h9n3o4 structure. Page 3
Nicorandil c8h9n3o4 structure. Page 4
Nicorandil c8h9n3o4 structure. Page 5
Nicorandil c8h9n3o4 structure. Page 6
Nicorandil c8h9n3o4 structure. Page 7
Nicorandil c8h9n3o4 structure. Page 8
Nicorandil c8h9n3o4 structure. Page 9

This work, titled "Nicorandil c8h9n3o4 structure" was written and willingly shared by a fellow student. This sample can be utilized as a research and reference resource to aid in the writing of your own work. Any use of the work that does not include an appropriate citation is banned.

If you are the owner of this work and don’t want it to be published on AssignBuster, request its removal.

Request Removal
Cite this Essay

References

AssignBuster. (2022) 'Nicorandil c8h9n3o4 structure'. 29 July.

Reference

AssignBuster. (2022, July 29). Nicorandil c8h9n3o4 structure. Retrieved from https://assignbuster.com/nicorandil-c8h9n3o4-structure/

References

AssignBuster. 2022. "Nicorandil c8h9n3o4 structure." July 29, 2022. https://assignbuster.com/nicorandil-c8h9n3o4-structure/.

1. AssignBuster. "Nicorandil c8h9n3o4 structure." July 29, 2022. https://assignbuster.com/nicorandil-c8h9n3o4-structure/.


Bibliography


AssignBuster. "Nicorandil c8h9n3o4 structure." July 29, 2022. https://assignbuster.com/nicorandil-c8h9n3o4-structure/.

Work Cited

"Nicorandil c8h9n3o4 structure." AssignBuster, 29 July 2022, assignbuster.com/nicorandil-c8h9n3o4-structure/.

Get in Touch

Please, let us know if you have any ideas on improving Nicorandil c8h9n3o4 structure, or our service. We will be happy to hear what you think: [email protected]