1,899
27
Essay, 9 pages (2000 words)

Editorial: membrane domains as new drug targets

Our understanding of the plasma membrane of eukaryotic cells has profoundly changed over the past 40 years ( Kusumi et al., 2012 ). It is now well-understood that at the plasma membrane lipids and proteins are not randomly distributed, but are highly organized in discrete membrane domains with specific compositions such as lipid rafts, tetraspanin-enriched microdomains, caveolae or cortical actin-dependent membrane compartments ( Cambi and Lidke, 2012 ; Kusumi et al., 2012 ). Membrane domains act as dedicated platforms for a whole range of cellular functions, such as cell proliferation, adhesion, migration, and intracellular trafficking, thus being appealing targets for drug treatment. This possibility has sprouted in numerous research efforts to identify and characterize drugs that selectively target membrane domains. Drugs may block or promote cellular functions by inducing, stabilizing, or disrupting the integrity or structure of these membrane domains.

This Review Topic provides a timely overview of the latest insights in the pharmaceutical potential of membrane domains, both protein- and lipid-based. Beckmann and colleagues highlight current research studies and clinical trials revolving around the inhibition of ceramide domain formation by antidepressants targeting the enzyme acid sphingomyelinase (ASM) ( Beckmann et al., 2014 ). Considering the involvement of ASM-depending ceramide domains in several diseases including cancer ( Petersen et al., 2013 ), infectious diseases ( Grassme et al., 2003 ) and major depression ( Gulbins et al., 2013 ), the impact of drugs that inhibit ASM activity is potentially broad ( Kornhuber et al., 2010 ).

Milovanovic and Jahn review the roles of microdomains in neurobiology focusing on the molecular mechanisms mediating domain organization at the presynaptic membrane ( Milovanovic and Jahn, 2015 ). The organization of SNARE proteins in membrane domains for localized vesicle docking, release and retrieval is a highly studied topic. SNARE proteins catalyze the final fusion steps of the neurotransmitter containing synaptic vesicles with the plasma membrane ( Jahn and Scheller, 2006 ; Hong and Lev, 2014 ) and are the main targets of the Clostridial neurotoxins, which are widely used in the clinic as muscle relaxants ( Rossetto et al., 2014 ). The authors not only provide an overview of the mechanisms that contribute to the clustering of SNARE proteins ( van den Bogaart et al., 2013 ), but also integrate these into a single and elegant model describing the organization of SNAREs in membrane domains at the presynaptic membrane.

Navarro and co-workers discuss the therapeutic potential of targeting caveolae ( Shvets et al., 2014 ) for treatment of cardiovasculature diseases, including atherosclerosis and pulmonary arterial hypertension ( Navarro et al., 2014 ). Caveolae function in transcytosis of cholesterol-rich lipoproteins across endothelium of blood vessels and in the regulation of the activities of various ion channels and G-protein coupled receptors. Navarro and colleagues also review the connection between caveolae and Parkinson and Alzheimer diseases, where caveola are affected, and discuss how this may relate to the etiology and pathophysiology of these neurodegenerative diseases. The authors discuss potential strategies for developing drugs that selectively target caveolae.

Tetraspanins belong to the superfamily of four-transmembrane proteins that interact in cis with other membrane proteins and intracellular proteins forming so-called “ tetraspanin microdomains” ( Tarrant et al., 2003 ). These have attracted much attention as potential drug targets since recent studies have demonstrated that tetraspanins not only organize proteins in the plasma membrane, but also that they can directly regulate signaling pathways ( Levy and Shoham, 2005 ; Lapalombella et al., 2012 ; van Spriel et al., 2012 ). Tetraspanin expression by tumor cells has been related to tumor progression and metastasis ( Wright et al., 2004 ; Zoller, 2009 ; Hemler, 2014 ).

Ailane et al. describe the potency of targeting the tetraspanin Co-029/Tspan8 on colorectal tumor cells ( Ailane et al., 2014 ). The expression profile of Tspan8 is largely restricted to squamous epithelial cells in the digestive tract, capillary endothelial cells, nerves, and muscle cells. Tspan8 over-expression has been documented in different carcinomas which relates to an increased metastatic capacity of tumor cells and poor prognosis (reviewed in Zoller, 2009 ). Here, the effect of a Tspan8 antibody on colorectal cancer cells was investigated in tumor cell lines and in a xenogeneic mouse model. Although no effect on tumor cell proliferation or apoptosis induction was found in vitro , antibody treatment of tumor-bearing mice resulted in significantly delayed tumor growth. Binding of the Tspan8 antibody to the tumor cells may modify their response to the tumor microenvironment possibly by disrupting the assembly of tetraspanin microdomains containing integrins, growth factor receptors, and/or signaling molecules.

The effectiveness of tetraspanin targeting in hematological malignancies is concisely reviewed by the group of Muthusamy ( Beckwith et al., 2015 ). CD37 is highly expressed by B cells, B cell lymphomas and some leukemias. The historical view of tetraspanins as membrane organizers or scaffolds may be incomplete as it has recently been shown that CD37 has direct signaling capacities ( Lapalombella et al., 2012 ). The intracellular tails of CD37 contain ITAM-like and ITIM-like motifs that may recruit PI3K and SHP-1. Coupling of CD37 to the Akt survival pathway has been shown in CD37-deficient mice that have defects in humoral immunity ( van Spriel et al., 2012 ). Excitingly, several CD37-targeting therapeutics have been developed which are currently under evaluation in clinical trials in patients with B cell malignancies ( Zhao et al., 2007 ; Heider et al., 2011 ; Deckert et al., 2013 ).

The use of transmembrane proteins as target for intracellular drug delivery is an exciting possibility discussed by Popov-Čeleketić and Van Bergen en Henegouwen, who elaborate on the role of cancer-specific growth factor receptor domains in receptor-mediated endocytosis ( Popov-Celeketic and van Bergen En Henegouwen, 2014 ). Focusing on the epidermal growth factor receptor, the authors discuss how membrane receptor clustering and internalization can be exploited to target cancer cells using classical antibodies ( Okines et al., 2011 ) and nanobodies ( Heukers et al., 2014 ) conjugated to cytotoxic pharmaceutical agents.

Together, we believe our Review Topic provides an exciting overview of the various targeting and effector strategies of drugs that selectively target membrane domains. This synergistic overview brings together previously detached research fields and disciplines. Given the increasing appreciation of the fundamental importance of membrane domains in cellular function, we hope that this overview will foster the development or optimization of new pharmaceutical strategies for a wide range of human diseases and disorders.

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

We wish to thank the colleagues who contributed to this review topic. ABvS is supported by the Netherlands Organization for Scientific Research (NWO-ALW VIDI Grant 864. 11. 006) and the Dutch Cancer Society (KUN2014-6845). GvdB is funded by a fellowship from the Radboudumc, the Human Frontier Science Program, and the European Research Council (Starting Grant 336479). AC is supported by the HFSP (Grant RGP0027/2012) and the European Union (Nanovista FP7-ICT-2011-7, grant No. 288263).

References

Ailane, N., Greco, C., Zhu, Y., Sala-Valdes, M., Billard, M., Casal, I., et al. (2014). Effect of an anti-human Co-029/tspan8 mouse monoclonal antibody on tumor growth in a nude mouse model. Front. Physiol . 5: 364. doi: 10. 3389/fphys. 2014. 00364

||

Beckmann, N., Sharma, D., Gulbins, E., Becker, K. A., and Edelmann, B. (2014). Inhibition of acid sphingomyelinase by tricyclic antidepressants and analogons. Front. Physiol . 5: 331. doi: 10. 3389/fphys. 2014. 00331

||

Beckwith, K. A., Byrd, J. C., and Muthusamy, N. (2015). Tetraspanins as therapeutic targets in hematological malignancy: a concise review. Front. Physiol . 6: 91. doi: 10. 3389/fphys. 2015. 00091

||

Cambi, A., and Lidke, D. S. (2012). Nanoscale membrane organization: where biochemistry meets advanced microscopy. ACS Chem. Biol . 7, 139–149. doi: 10. 1021/cb200326g

||

Deckert, J., Park, P. U., Chicklas, S., Yi, Y., Li, M., Lai, K. C., et al. (2013). A novel anti-CD37 antibody-drug conjugate with multiple anti-tumor mechanisms for the treatment of B-cell malignancies. Blood 122, 3500–3510. doi: 10. 1182/blood-2013-05-505685

||

Grassme, H., Jendrossek, V., Riehle, A., von Kurthy, G., Berger, J., Schwarz, H., et al. (2003). Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat. Med . 9, 322–330. doi: 10. 1038/nm823

||

Gulbins, E., Palmada, M., Reichel, M., Luth, A., Bohmer, C., Amato, D., et al. (2013). Acid sphingomyelinase-ceramide system mediates effects of antidepressant drugs. Nat. Med . 19, 934–938. doi: 10. 1038/nm. 3214

||

Heider, K. H., Kiefer, K., Zenz, T., Volden, M., Stilgenbauer, S., Ostermann, E., et al. (2011). A novel Fc-engineered monoclonal antibody to CD37 with enhanced ADCC and high proapoptotic activity for treatment of B-cell malignancies. Blood 118, 4159–4168. doi: 10. 1182/blood-2011-04-351932

||

Hemler, M. E. (2014). Tetraspanin proteins promote multiple cancer stages. Nat. Rev. Cancer 14, 49–60. doi: 10. 1038/nrc3640

||

Heukers, R., van Bergen en Henegouwen, P. M., and Oliveira, S. (2014). Nanobody-photosensitizer conjugates for targeted photodynamic therapy. Nanomedicine 10, 1441–1451. doi: 10. 1016/j. nano. 2013. 12. 007

||

Hong, W., and Lev, S. (2014). Tethering the assembly of SNARE complexes. Trends Cell Biol . 24, 35–43. doi: 10. 1016/j. tcb. 2013. 09. 006

||

Jahn, R., and Scheller, R. H. (2006). SNAREs–engines for membrane fusion. Nat. Rev. Mol. Cell. Biol . 7, 631–643. doi: 10. 1038/nrm2002

||

Kornhuber, J., Tripal, P., Reichel, M., Muhle, C., Rhein, C., Muehlbacher, M., et al. (2010). Functional Inhibitors of Acid Sphingomyelinase (FIASMAs): a novel pharmacological group of drugs with broad clinical applications. Cell. Physiol. Biochem . 26, 9–20. doi: 10. 1159/000315101

||

Kusumi, A., Fujiwara, T. K., Chadda, R., Xie, M., Tsunoyama, T. A., Kalay, Z., et al. (2012). Dynamic organizing principles of the plasma membrane that regulate signal transduction: commemorating the fortieth anniversary of Singer and Nicolson’s fluid-mosaic model. Annu. Rev. Cell Dev. Biol . 28, 215–250. doi: 10. 1146/annurev-cellbio-100809-151736

||

Lapalombella, R., Yeh, Y. Y., Wang, L., Ramanunni, A., Rafiq, S., Jha, S., et al. (2012). Tetraspanin CD37 directly mediates transduction of survival and apoptotic signals. Cancer Cell 21, 694–708. doi: 10. 1016/j. ccr. 2012. 03. 040

||

Levy, S., and Shoham, T. (2005). The tetraspanin web modulates immune-signalling complexes. Nat. Rev. Immunol . 5, 136–148. doi: 10. 1038/nri1548

||

Milovanovic, D., and Jahn, R. (2015). Organization and dynamics of SNARE proteins in the presynaptic membrane. Front. Physiol . 6: 89. doi: 10. 3389/fphys. 2015. 00089

||

Navarro, G., Borroto-Escuela, D. O., Fuxe, K., and Franco, R. (2014). Potential of caveolae in the therapy of cardiovascular and neurological diseases. Front. Physiol . 5: 370. doi: 10. 3389/fphys. 2014. 00370

||

Okines, A., Cunningham, D., and Chau, I. (2011). Targeting the human EGFR family in esophagogastric cancer. Nat. Rev. Clin. Oncol . 8, 492–503. doi: 10. 1038/nrclinonc. 2011. 45

||

Petersen, N. H., Olsen, O. D., Groth-Pedersen, L., Ellegaard, A. M., Bilgin, M., Redmer, S., et al. (2013). Transformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase. Cancer Cell 24, 379–393. doi: 10. 1016/j. ccr. 2013. 08. 003

||

Popov-Celeketic, D., and van Bergen En Henegouwen, P. M. (2014). Membrane domain formation-a key factor for targeted intracellular drug delivery. Front. Physiol . 5: 462. doi: 10. 3389/fphys. 2014. 00462

||

Rossetto, O., Pirazzini, M., and Montecucco, C. (2014). Botulinum neurotoxins: genetic, structural and mechanistic insights. Nat. Rev. Microbiol . 12, 535–549. doi: 10. 1038/nrmicro3295

||

Shvets, E., Ludwig, A., and Nichols, B. J. (2014). News from the caves: update on the structure and function of caveolae. Curr. Opin. Cell Biol . 29, 99–106. doi: 10. 1016/j. ceb. 2014. 04. 011

||

Tarrant, J. M., Robb, L., van Spriel, A. B., and Wright, M. D. (2003). Tetraspanins: molecular organisers of the leukocyte surface. Trends Immunol . 24, 610–617. doi: 10. 1016/j. it. 2003. 09. 011

||

van den Bogaart, G., Lang, T., and Jahn, R. (2013). Microdomains of SNARE proteins in the plasma membrane. Curr. Top. Membr . 72, 193–230. doi: 10. 1016/b978-0-12-417027-8. 00006-4

||

van Spriel, A. B., de Keijzer, S., van der Schaaf, A., Gartlan, K. H., Sofi, M., Light, A., et al. (2012). The tetraspanin CD37 orchestrates the alpha(4)beta(1) integrin-Akt signaling axis and supports long-lived plasma cell survival. Sci. Signal . 5, ra82. doi: 10. 1126/scisignal. 2003113

||

Wright, M. D., Moseley, G. W., and van Spriel, A. B. (2004). Tetraspanin microdomains in immune cell signalling and malignant disease. Tissue Antigens 64, 533–542. doi: 10. 1111/j. 1399-0039. 2004. 00321. x

||

Zhao, X., Lapalombella, R., Joshi, T., Cheney, C., Gowda, A., Hayden-Ledbetter, M. S., et al. (2007). Targeting CD37-positive lymphoid malignancies with a novel engineered small modular immunopharmaceutical. Blood 110, 2569–2577. doi: 10. 1182/blood-2006-12-062927

||

Zoller, M. (2009). Tetraspanins: push and pull in suppressing and promoting metastasis. Nat. Rev. Cancer 9, 40–55. doi: 10. 1038/nrc2543

||

Thank's for Your Vote!
Editorial: membrane domains as new drug targets. Page 1
Editorial: membrane domains as new drug targets. Page 2
Editorial: membrane domains as new drug targets. Page 3
Editorial: membrane domains as new drug targets. Page 4
Editorial: membrane domains as new drug targets. Page 5
Editorial: membrane domains as new drug targets. Page 6
Editorial: membrane domains as new drug targets. Page 7
Editorial: membrane domains as new drug targets. Page 8
Editorial: membrane domains as new drug targets. Page 9

This work, titled "Editorial: membrane domains as new drug targets" was written and willingly shared by a fellow student. This sample can be utilized as a research and reference resource to aid in the writing of your own work. Any use of the work that does not include an appropriate citation is banned.

If you are the owner of this work and don’t want it to be published on AssignBuster, request its removal.

Request Removal
Cite this Essay

References

AssignBuster. (2022) 'Editorial: membrane domains as new drug targets'. 21 January.

Reference

AssignBuster. (2022, January 21). Editorial: membrane domains as new drug targets. Retrieved from https://assignbuster.com/editorial-membrane-domains-as-new-drug-targets/

References

AssignBuster. 2022. "Editorial: membrane domains as new drug targets." January 21, 2022. https://assignbuster.com/editorial-membrane-domains-as-new-drug-targets/.

1. AssignBuster. "Editorial: membrane domains as new drug targets." January 21, 2022. https://assignbuster.com/editorial-membrane-domains-as-new-drug-targets/.


Bibliography


AssignBuster. "Editorial: membrane domains as new drug targets." January 21, 2022. https://assignbuster.com/editorial-membrane-domains-as-new-drug-targets/.

Work Cited

"Editorial: membrane domains as new drug targets." AssignBuster, 21 Jan. 2022, assignbuster.com/editorial-membrane-domains-as-new-drug-targets/.

Get in Touch

Please, let us know if you have any ideas on improving Editorial: membrane domains as new drug targets, or our service. We will be happy to hear what you think: [email protected]