1,691
16
Essay, 4 pages (1000 words)

Sulfathiazole c9h9n3o2s2 structure

Contents

  • Retention Index (Kovats):
Molecular Formula C 9 H 9 N 3 O 2 S 2
Average mass 255. 317 Da
Density 1. 6±0. 1 g/cm 3
Boiling Point 479. 5±47. 0 °C at 760 mmHg
Flash Point 243. 8±29. 3 °C
Molar Refractivity 63. 5±0. 4 cm 3
Polarizability 25. 2±0. 5 10 -24 cm 3
Surface Tension 83. 1±3. 0 dyne/cm
Molar Volume 163. 5±3. 0 cm 3
  • Experimental data
  • Predicted – ACD/Labs
  • Predicted – EPISuite
  • Predicted – ChemAxon
  • Predicted – Mcule
  • Experimental Physico-chemical Properties
    • Experimental Melting Point:

      200 °CTCIS0272
      200-203 °CAlfa Aesar
      202 °COxford University Chemical Safety Data (No longer updated)More details
      199-202 °CMerck Millipore3230, 821112
      202. 5 °CJean-Claude Bradley Open Melting Point Dataset28555, 28556
      200 °CJean-Claude Bradley Open Melting Point Dataset28555, 28556
      202 °CJean-Claude Bradley Open Melting Point Dataset15438, 17204, 21528, 8442
      200-203 °CAlfa AesarA10727
      80 °CBiosynthQ-201766
      196-198 °CLabNetworkLN00225368
    • Experimental Flash Point:

      102. 9 °CBiosynthQ-201766
    • Experimental Gravity:

      102. 9 g/mLBiosynthQ-201766
    • Experimental Solubility:

      10 mM in DMSOMedChem ExpressHY-B0507
      -2. 43Egon Willighagenhttp://dx. doi. org/10. 1021/ci050282s
      DMSO 50 mg/mL; Water <1 mgmlmedchem expresshttp:>
  • Predicted Physico-chemical Properties
    • Predicted Melting Point:

      200 °CTCI
      200 °CTCIS0272
  • Miscellaneous
    • Appearance:

      white to cream powderOxford University Chemical Safety Data (No longer updated)More details
    • Stability:

      Stable. Incompatible with strong oxidizing agents. Oxford University Chemical Safety Data (No longer updated)More details
    • Toxicity:

      IPR-MUS LD50 400 mg kg-1, SCU-MUS LD50 1450 mg kg-1, IVN-MUS LD50 990 mg kg-1Oxford University Chemical Safety Data (No longer updated)More details
    • Safety:

      26-37Alfa AesarA10727
      36/37/38Alfa AesarA10727
      H315-H319-H335Alfa AesarA10727
      P261; P262BiosynthQ-201766
      P261-P280-P305+P351+P338-P304+P340-P405-P501aAlfa AesarA10727
      Safety glasses, adequate ventilation. Oxford University Chemical Safety Data (No longer updated)More details
      WarningAlfa AesarA10727
      WARNING: Irreversible damage risk, protect skin/eyes/lungs. Alfa AesarA10727
    • Target Organs:

      Antibiotic; DHPS inhibitorTargetMolT0747
    • Compound Source:

      syntheticMicrosource[01500553]
    • Bio Activity:

      AntibacterialMedChem ExpressHY-B0507
      Anti-infectionMedChem ExpressHY-B0507
      Anti-infection; MedChem ExpressHY-B0507
      Dihydropteroate synthetase; DHPSTargetMolT0747
      EnzymeTargetMolT0747
      Sulfathiazole is an organosulfur compound that has been used as a short-acting sulfa drug.; Target: Antibacterial; Sulfathiazole (20 ? g/L) starts to be degraded between day 31 and day 38 in one of the two batch reactors containing different wastewater matrices. MedChem ExpressHY-B0507
      Sulfonamide; Zerenex Molecular[ZBioX-0664]
  • Gas Chromatography
    • Retention Index (Kovats):

      2423 (estimated with error: 89)NIST Spectramainlib_231963, replib_290925, replib_65076

Predicted data is generated using the ACD/Labs Percepta Platform – PhysChem Module

Density: 1. 6±0. 1 g/cm 3
Boiling Point: 479. 5±47. 0 °C at 760 mmHg
Vapour Pressure: 0. 0±1. 2 mmHg at 25°C
Enthalpy of Vaporization: 74. 4±3. 0 kJ/mol
Flash Point: 243. 8±29. 3 °C
Index of Refraction: 1. 704
Molar Refractivity: 63. 5±0. 4 cm 3
#H bond acceptors: 5
#H bond donors: 3
#Freely Rotating Bonds: 3
#Rule of 5 Violations: 0
ACD/LogP: 0. 05
ACD/LogD (pH 5. 5): 0. 41
ACD/BCF (pH 5. 5): 1. 20
ACD/KOC (pH 5. 5): 39. 50
ACD/LogD (pH 7. 4): 0. 03
ACD/BCF (pH 7. 4): 1. 00
ACD/KOC (pH 7. 4): 16. 59
Polar Surface Area: 122 Å 2
Polarizability: 25. 2±0. 5 10 -24 cm 3
Surface Tension: 83. 1±3. 0 dyne/cm
Molar Volume: 163. 5±3. 0 cm 3

Predicted data is generated using the US Environmental Protection Agency’s EPISuite™

 Log Octanol-Water Partition Coef (SRC): Log Kow (KOWWIN v1. 67 estimate) = 0. 72Log Kow (Exper. database match) = 0. 05Exper. Ref: Hansch, C et al. (1995)Boiling Pt, Melting Pt, Vapor Pressure Estimations (MPBPWIN v1. 42): Boiling Pt (deg C): 428. 28 (Adapted Stein & Brown method)Melting Pt (deg C): 179. 10 (Mean or Weighted MP)VP(mm Hg, 25 deg C): 3. 24E-008 (Modified Grain method)MP (exp database): 189 deg CSubcooled liquid VP: 1. 69E-006 mm Hg (25 deg C, Mod-Grain method)Water Solubility Estimate from Log Kow (WSKOW v1. 41): Water Solubility at 25 deg C (mg/L): 2. 003e+004log Kow used: 0. 05 (expkow database)no-melting pt equation usedWater Sol (Exper. database match) = 373 mg/L (25 deg C)Exper. Ref: YALKOWSKY, SH & DANNENFELSER, RM (1992)Water Sol Estimate from Fragments: Wat Sol (v1. 01 est) = 671. 45 mg/LWat Sol (Exper. database match) = 373. 00Exper. Ref: YALKOWSKY, SH & DANNENFELSER, RM (1992)ECOSAR Class Program (ECOSAR v0. 99h): Class(es) found: Aromatic AminesHenrys Law Constant (25 deg C) [HENRYWIN v3. 10]: Bond Method : 5. 85E-014 atm-m3/moleGroup Method: IncompleteHenrys LC [VP/WSol estimate using EPI values]: 5. 434E-013 atm-m3/moleLog Octanol-Air Partition Coefficient (25 deg C) [KOAWIN v1. 10]: Log Kow used: 0. 05 (exp database)Log Kaw used: -11. 621 (HenryWin est)Log Koa (KOAWIN v1. 10 estimate): 11. 671Log Koa (experimental database): NoneProbability of Rapid Biodegradation (BIOWIN v4. 10): Biowin1 (Linear Model) : 0. 3922Biowin2 (Non-Linear Model) : 0. 0742Expert Survey Biodegradation Results: Biowin3 (Ultimate Survey Model): 2. 5000 (weeks-months)Biowin4 (Primary Survey Model) : 3. 3710 (days-weeks )MITI Biodegradation Probability: Biowin5 (MITI Linear Model) : -0. 1558Biowin6 (MITI Non-Linear Model): 0. 0047Anaerobic Biodegradation Probability: Biowin7 (Anaerobic Linear Model): -0. 0143Ready Biodegradability Prediction: NOHydrocarbon Biodegradation (BioHCwin v1. 01): Structure incompatible with current estimation method! Sorption to aerosols (25 Dec C)[AEROWIN v1. 00]: Vapor pressure (liquid/subcooled): 0. 000225 Pa (1. 69E-006 mm Hg)Log Koa (Koawin est ): 11. 671Kp (particle/gas partition coef. (m3/ug)): Mackay model : 0. 0133 Octanol/air (Koa) model: 0. 115 Fraction sorbed to airborne particulates (phi): Junge-Pankow model : 0. 325 Mackay model : 0. 516 Octanol/air (Koa) model: 0. 902 Atmospheric Oxidation (25 deg C) [AopWin v1. 92]: Hydroxyl Radicals Reaction: OVERALL OH Rate Constant = 53. 6431 E-12 cm3/molecule-secHalf-Life = 0. 199 Days (12-hr day; 1. 5E6 OH/cm3)Half-Life = 2. 393 HrsOzone Reaction: No Ozone Reaction EstimationFraction sorbed to airborne particulates (phi): 0. 42 (Junge, Mackay)Note: the sorbed fraction may be resistant to atmospheric oxidationSoil Adsorption Coefficient (PCKOCWIN v1. 66): Koc : 945. 1Log Koc: 2. 975 Aqueous Base/Acid-Catalyzed Hydrolysis (25 deg C) [HYDROWIN v1. 67]: Rate constants can NOT be estimated for this structure! Bioaccumulation Estimates from Log Kow (BCFWIN v2. 17): Log BCF from regression-based method = 0. 500 (BCF = 3. 162)log Kow used: 0. 05 (expkow database)Volatilization from Water: Henry LC: 5. 85E-014 atm-m3/mole (estimated by Bond SAR Method)Half-Life from Model River: 1. 599E+010 hours (6. 663E+008 days)Half-Life from Model Lake : 1. 745E+011 hours (7. 269E+009 days)Removal In Wastewater Treatment: Total removal: 1. 85 percentTotal biodegradation: 0. 09 percentTotal sludge adsorption: 1. 76 percentTotal to Air: 0. 00 percent(using 10000 hr Bio P, A, S)Level III Fugacity Model: Mass Amount Half-Life Emissions(percent) (hr) (kg/hr)Air 1. 49e-006 4. 79 1000 Water 45. 7 900 1000 Soil 54. 2 1. 8e+003 1000 Sediment 0. 0887 8. 1e+003 0 Persistence Time: 983 hr 

Click to predict properties on the Chemicalize site

  • 1-Click Docking
  • 1-Click Scaffold Hop

Thank's for Your Vote!
Sulfathiazole c9h9n3o2s2 structure. Page 1
Sulfathiazole c9h9n3o2s2 structure. Page 2
Sulfathiazole c9h9n3o2s2 structure. Page 3
Sulfathiazole c9h9n3o2s2 structure. Page 4
Sulfathiazole c9h9n3o2s2 structure. Page 5
Sulfathiazole c9h9n3o2s2 structure. Page 6
Sulfathiazole c9h9n3o2s2 structure. Page 7
Sulfathiazole c9h9n3o2s2 structure. Page 8
Sulfathiazole c9h9n3o2s2 structure. Page 9

This work, titled "Sulfathiazole c9h9n3o2s2 structure" was written and willingly shared by a fellow student. This sample can be utilized as a research and reference resource to aid in the writing of your own work. Any use of the work that does not include an appropriate citation is banned.

If you are the owner of this work and don’t want it to be published on AssignBuster, request its removal.

Request Removal
Cite this Essay

References

AssignBuster. (2022) 'Sulfathiazole c9h9n3o2s2 structure'. 25 September.

Reference

AssignBuster. (2022, September 25). Sulfathiazole c9h9n3o2s2 structure. Retrieved from https://assignbuster.com/sulfathiazole-c9h9n3o2s2-structure/

References

AssignBuster. 2022. "Sulfathiazole c9h9n3o2s2 structure." September 25, 2022. https://assignbuster.com/sulfathiazole-c9h9n3o2s2-structure/.

1. AssignBuster. "Sulfathiazole c9h9n3o2s2 structure." September 25, 2022. https://assignbuster.com/sulfathiazole-c9h9n3o2s2-structure/.


Bibliography


AssignBuster. "Sulfathiazole c9h9n3o2s2 structure." September 25, 2022. https://assignbuster.com/sulfathiazole-c9h9n3o2s2-structure/.

Work Cited

"Sulfathiazole c9h9n3o2s2 structure." AssignBuster, 25 Sept. 2022, assignbuster.com/sulfathiazole-c9h9n3o2s2-structure/.

Get in Touch

Please, let us know if you have any ideas on improving Sulfathiazole c9h9n3o2s2 structure, or our service. We will be happy to hear what you think: [email protected]