1,204
23
Research Paper, 3 pages (750 words)

Nitric acid

Copper + Nitric Acid Copper is a reddish-brown metal, widely used in plumbing and electrical wiring; it is perhaps most familiar to people in the United States in the form of the penny. (Although since 1983, pennies are actually made of zinc surrounded by a paper-thin copper foil to give them the traditional appearance of pennies. ) Copper is oxidized by concentrated nitric acid, HNO3, to produce Cu2+ ions; the nitric acid is reduced to nitrogen dioxide, a poisonous brown gas with an irritating odor: Cu(s) + 4HNO3(aq) ——> Cu(NO3)2(aq) + 2NO2(g) + 2H2O(l)

When the copper is first oxidized, the solution is very concentrated, and the Cu2+ product is initially coordinated to nitrate ions from the nitric acid, giving the solution first a green, and then a greenish-brownish color. When the solution is diluted with water, water molecules displace the nitrate ions in the coordinate sites around the copper ions, causing the solution to change to a blue color. In dilute nitric acid, the reaction produces nitric oxide, NO, instead: 3Cu(s) + 8HNO3(aq) ——> 3Cu(NO3)2(aq) + 2NO(g) + 4H2O(l)

In the following demonstration, a balled-up piece of thin copper wire is added to about 100 mL of concentrated nitric acid; once the copper is added the evolution of nitrogen dioxide occurs quickly. Once all of the copper has reacted, the solution is diluted with distilled water, changing the solution from a dark brown to a pale blue color. This demonstration can be done with copper in the form of shot, pellets, thicker wire, or bars, but is a great deal slower than with copper wire. Video Clip: REAL, 7. 02 MB [pic] |[pic] | |[pic] |[pic] | |[pic] |[pic] | |[pic] |[pic] | |[pic] |[pic] |[pic] |[pic] | |[pic] |[pic] | |[pic] |[pic] | |[pic] |[pic] |

A Historical Sidelight: Ira Remsen on Copper and Nitric Acid Ira Remsen (1846-1927) founded the chemistry department at Johns Hopkins University, and founded one of the first centers for chemical research in the United States; saccharin was discovered in his research lab in 1879. Like many chemists, he had a vivid ” learning experience,” which led to a heightened interest in laboratory work: While reading a textbook of chemistry I came upon the statement, ” nitric acid acts upon copper. ” I was getting tired of reading such absurd stuff and I was determined to see what this meant.

Copper was more or less familiar to me, for copper cents were then in use. I had seen a bottle marked nitric acid on a table in thedoctor’s office where I was then ” doing time. ” I did not know its peculiarities, but the spirit of adventure was upon me. Having nitric acid and copper, I had only to learn what the words ” act upon” meant. The statement ” nitric acid acts upon copper” would be something more than mere words. All was still. In the interest of knowledge I was even willing to sacrifice one of the few copper cents then in my possession.

I put one of them on the table, opened the bottle marked nitric acid, poured some of the liquid on the copper and prepared to make anobservation. But what was this wonderful thing which I beheld? The cent was already changed and it was no small change either. A green-blue liquid foamed and fumed over the cent and over the table. The air in the neighborhood of the performance became colored dark red. A great colored cloud arose. This was disagreeable and suffocating. How should I stop this? I tried to get rid of the objectionable mess by picking it up and throwing it out of the window.

I learned another fact. Nitric acid not only acts upon copper, but it acts upon fingers. The pain led to another unpremeditated experiment. I drew my fingers across my trousers and another fact was discovered. Nitric acid acts upon trousers. Taking everything into consideration, that was the most impressive experiment and relatively probably the most costly experiment I have ever performed. . . . It was a revelation to me. It resulted in a desire on my part to learn more about that remarkable kind of action.

Plainly, the only way to learn about it was to see its results, to experiment, to work in a laboratory. from F. H. Getman, ” The Life of Ira Remsen”; Journal of ChemicalEducation: Easton, Pennsylvania, 1940; pp 9-10; quoted in Richard W. Ramette, ” Exocharmic Reactions” in Bassam Z. Shakhashiri, Chemical Demonstrations: A Handbook for Teachers of Chemistry, Volume 1. Madison: The University of Wisconsin Press, 1983, p. xiv: !!! Hazards !!! Nitric acid is extremely corrosive. Handle with care. The nitrogen dioxide produced in this reaction is poisonous. This reaction must be done in a fume hood!

Thank's for Your Vote!
Nitric acid. Page 1
Nitric acid. Page 2
Nitric acid. Page 3
Nitric acid. Page 4

This work, titled "Nitric acid" was written and willingly shared by a fellow student. This sample can be utilized as a research and reference resource to aid in the writing of your own work. Any use of the work that does not include an appropriate citation is banned.

If you are the owner of this work and don’t want it to be published on AssignBuster, request its removal.

Request Removal
Cite this Research Paper

References

AssignBuster. (2022) 'Nitric acid'. 1 October.

Reference

AssignBuster. (2022, October 1). Nitric acid. Retrieved from https://assignbuster.com/nitric-acid/

References

AssignBuster. 2022. "Nitric acid." October 1, 2022. https://assignbuster.com/nitric-acid/.

1. AssignBuster. "Nitric acid." October 1, 2022. https://assignbuster.com/nitric-acid/.


Bibliography


AssignBuster. "Nitric acid." October 1, 2022. https://assignbuster.com/nitric-acid/.

Work Cited

"Nitric acid." AssignBuster, 1 Oct. 2022, assignbuster.com/nitric-acid/.

Get in Touch

Please, let us know if you have any ideas on improving Nitric acid, or our service. We will be happy to hear what you think: [email protected]