1,135
18
Essay, 3 pages (750 words)

1-chloro-4-methoxybutane c5h11clo structure

Contents

  • Retention Index (Normal Alkane):
Molecular Formula C 5 H 11 ClO
Average mass 122. 593 Da
Density 1. 0±0. 1 g/cm 3
Boiling Point 138. 3±23. 0 °C at 760 mmHg
Flash Point 47. 8±17. 9 °C
Molar Refractivity 31. 8±0. 3 cm 3
Polarizability 12. 6±0. 5 10 -24 cm 3
Surface Tension 25. 4±3. 0 dyne/cm
Molar Volume 128. 8±3. 0 cm 3
  • Experimental data
  • Predicted – ACD/Labs
  • Predicted – EPISuite
  • Predicted – ChemAxon
  • Gas Chromatography
    • Retention Index (Kovats):

      819 (estimated with error: 89)NIST Spectramainlib_153869, replib_46403
    • Retention Index (Normal Alkane):

      840. 3 (Program type: Isothermal; Col… (show more)umn class: Semi-standard non-polar; Column type: Packed; CAS no: 17913187; Active phase: Squalane; Data type: Normal alkane RI; Authors: Keiko, V. V.; Prokop’ev, B. V.; Kuz’menko, L. P.; Kalinina, N. A.; Modonov, V. B., The use of an additive scheme of calculation of the indices of retention in gas-liquid chromatography communication. 3. Some regularities in the manifestation of the inductive effect, Izv. Akad. Nauk Kaz. SSR Ser. Khim., 12, 1972, 2629-2633, In original 2697-2702.)NIST Spectranist ri
      847. 3 (Program type: Isothermal; Col… (show more)umn class: Semi-standard non-polar; Column type: Packed; CAS no: 17913187; Active phase: Apiezon L; Data type: Normal alkane RI; Authors: Keiko, V. V.; Prokop’ev, B. V.; Kuz’menko, L. P.; Kalinina, N. A.; Modonov, V. B., The use of an additive scheme of calculation of the indices of retention in gas-liquid chromatography communication. 3. Some regularities in the manifestation of the inductive effect, Izv. Akad. Nauk Kaz. SSR Ser. Khim., 12, 1972, 2629-2633, In original 2697-2702.)NIST Spectranist ri

Predicted data is generated using the ACD/Labs Percepta Platform – PhysChem Module

Density: 1. 0±0. 1 g/cm 3
Boiling Point: 138. 3±23. 0 °C at 760 mmHg
Vapour Pressure: 8. 4±0. 2 mmHg at 25°C
Enthalpy of Vaporization: 36. 0±3. 0 kJ/mol
Flash Point: 47. 8±17. 9 °C
Index of Refraction: 1. 408
Molar Refractivity: 31. 8±0. 3 cm 3
#H bond acceptors: 1
#H bond donors: 0
#Freely Rotating Bonds: 4
#Rule of 5 Violations: 0
ACD/LogP: 1. 33
ACD/LogD (pH 5. 5): 1. 58
ACD/BCF (pH 5. 5): 9. 35
ACD/KOC (pH 5. 5): 172. 36
ACD/LogD (pH 7. 4): 1. 58
ACD/BCF (pH 7. 4): 9. 35
ACD/KOC (pH 7. 4): 172. 36
Polar Surface Area: 9 Å 2
Polarizability: 12. 6±0. 5 10 -24 cm 3
Surface Tension: 25. 4±3. 0 dyne/cm
Molar Volume: 128. 8±3. 0 cm 3

Predicted data is generated using the US Environmental Protection Agency’s EPISuite™

 Log Octanol-Water Partition Coef (SRC): Log Kow (KOWWIN v1. 67 estimate) = 1. 79Boiling Pt, Melting Pt, Vapor Pressure Estimations (MPBPWIN v1. 42): Boiling Pt (deg C): 136. 33 (Adapted Stein & Brown method)Melting Pt (deg C): -54. 48 (Mean or Weighted MP)VP(mm Hg, 25 deg C): 7. 52 (Mean VP of Antoine & Grain methods)Water Solubility Estimate from Log Kow (WSKOW v1. 41): Water Solubility at 25 deg C (mg/L): 2882log Kow used: 1. 79 (estimated)no-melting pt equation usedWater Sol Estimate from Fragments: Wat Sol (v1. 01 est) = 7173. 7 mg/LECOSAR Class Program (ECOSAR v0. 99h): Class(es) found: Neutral OrganicsHenrys Law Constant (25 deg C) [HENRYWIN v3. 10]: Bond Method : 7. 11E-004 atm-m3/moleGroup Method: 2. 87E-005 atm-m3/moleHenrys LC [VP/WSol estimate using EPI values]: 4. 209E-004 atm-m3/moleLog Octanol-Air Partition Coefficient (25 deg C) [KOAWIN v1. 10]: Log Kow used: 1. 79 (KowWin est)Log Kaw used: -1. 537 (HenryWin est)Log Koa (KOAWIN v1. 10 estimate): 3. 327Log Koa (experimental database): NoneProbability of Rapid Biodegradation (BIOWIN v4. 10): Biowin1 (Linear Model) : 0. 2304Biowin2 (Non-Linear Model) : 0. 0177Expert Survey Biodegradation Results: Biowin3 (Ultimate Survey Model): 2. 7464 (weeks-months)Biowin4 (Primary Survey Model) : 3. 5605 (days-weeks )MITI Biodegradation Probability: Biowin5 (MITI Linear Model) : 0. 5481Biowin6 (MITI Non-Linear Model): 0. 4944Anaerobic Biodegradation Probability: Biowin7 (Anaerobic Linear Model): 0. 5886Ready Biodegradability Prediction: NOHydrocarbon Biodegradation (BioHCwin v1. 01): Structure incompatible with current estimation method! Sorption to aerosols (25 Dec C)[AEROWIN v1. 00]: Vapor pressure (liquid/subcooled): 924 Pa (6. 93 mm Hg)Log Koa (Koawin est ): 3. 327Kp (particle/gas partition coef. (m3/ug)): Mackay model : 3. 25E-009 Octanol/air (Koa) model: 5. 21E-010 Fraction sorbed to airborne particulates (phi): Junge-Pankow model : 1. 17E-007 Mackay model : 2. 6E-007 Octanol/air (Koa) model: 4. 17E-008 Atmospheric Oxidation (25 deg C) [AopWin v1. 92]: Hydroxyl Radicals Reaction: OVERALL OH Rate Constant = 12. 7084 E-12 cm3/molecule-secHalf-Life = 0. 842 Days (12-hr day; 1. 5E6 OH/cm3)Half-Life = 10. 100 HrsOzone Reaction: No Ozone Reaction EstimationFraction sorbed to airborne particulates (phi): 1. 89E-007 (Junge, Mackay)Note: the sorbed fraction may be resistant to atmospheric oxidationSoil Adsorption Coefficient (PCKOCWIN v1. 66): Koc : 14. 95Log Koc: 1. 175 Aqueous Base/Acid-Catalyzed Hydrolysis (25 deg C) [HYDROWIN v1. 67]: Rate constants can NOT be estimated for this structure! Bioaccumulation Estimates from Log Kow (BCFWIN v2. 17): Log BCF from regression-based method = 0. 682 (BCF = 4. 804)log Kow used: 1. 79 (estimated)Volatilization from Water: Henry LC: 2. 87E-005 atm-m3/mole (estimated by Group SAR Method)Half-Life from Model River: 23. 72 hoursHalf-Life from Model Lake : 351. 6 hours (14. 65 days)Removal In Wastewater Treatment: Total removal: 3. 61 percentTotal biodegradation: 0. 09 percentTotal sludge adsorption: 1. 97 percentTotal to Air: 1. 55 percent(using 10000 hr Bio P, A, S)Level III Fugacity Model: Mass Amount Half-Life Emissions(percent) (hr) (kg/hr)Air 1. 65 20. 2 1000 Water 35. 1 900 1000 Soil 63. 2 1. 8e+003 1000 Sediment 0. 109 8. 1e+003 0 Persistence Time: 627 hr 

Click to predict properties on the Chemicalize site

Thank's for Your Vote!
1-chloro-4-methoxybutane c5h11clo structure. Page 1
1-chloro-4-methoxybutane c5h11clo structure. Page 2
1-chloro-4-methoxybutane c5h11clo structure. Page 3
1-chloro-4-methoxybutane c5h11clo structure. Page 4
1-chloro-4-methoxybutane c5h11clo structure. Page 5
1-chloro-4-methoxybutane c5h11clo structure. Page 6
1-chloro-4-methoxybutane c5h11clo structure. Page 7
1-chloro-4-methoxybutane c5h11clo structure. Page 8
1-chloro-4-methoxybutane c5h11clo structure. Page 9

This work, titled "1-chloro-4-methoxybutane c5h11clo structure" was written and willingly shared by a fellow student. This sample can be utilized as a research and reference resource to aid in the writing of your own work. Any use of the work that does not include an appropriate citation is banned.

If you are the owner of this work and don’t want it to be published on AssignBuster, request its removal.

Request Removal
Cite this Essay

References

AssignBuster. (2022) '1-chloro-4-methoxybutane c5h11clo structure'. 21 September.

Reference

AssignBuster. (2022, September 21). 1-chloro-4-methoxybutane c5h11clo structure. Retrieved from https://assignbuster.com/1-chloro-4-methoxybutane-c5h11clo-structure/

References

AssignBuster. 2022. "1-chloro-4-methoxybutane c5h11clo structure." September 21, 2022. https://assignbuster.com/1-chloro-4-methoxybutane-c5h11clo-structure/.

1. AssignBuster. "1-chloro-4-methoxybutane c5h11clo structure." September 21, 2022. https://assignbuster.com/1-chloro-4-methoxybutane-c5h11clo-structure/.


Bibliography


AssignBuster. "1-chloro-4-methoxybutane c5h11clo structure." September 21, 2022. https://assignbuster.com/1-chloro-4-methoxybutane-c5h11clo-structure/.

Work Cited

"1-chloro-4-methoxybutane c5h11clo structure." AssignBuster, 21 Sept. 2022, assignbuster.com/1-chloro-4-methoxybutane-c5h11clo-structure/.

Get in Touch

Please, let us know if you have any ideas on improving 1-chloro-4-methoxybutane c5h11clo structure, or our service. We will be happy to hear what you think: [email protected]