
Cake php

Science, Computer Science

https://assignbuster.com/essay-subjects/science/computer-science/
https://assignbuster.com/essay-subjects/science/
https://assignbuster.com/cake-php/
https://assignbuster.com/

 Cake php – Paper Example Page 2

JAYPEE UNIVERSITY OF ENGINEERING ANDTECHNOLOGYRAGHOGARH, GUNA

(M. P.) INDUSTRIAL TRAINING REPORT at ***** Software Solutions Limited

JUNE-JULY 2011 SUBMITTED BY: NAME: Rohit Gupta EN NO. : 08307G YEAR,

BRANCH: 2011, CSE Acknowledgement It has been a matter of great

pleasure for me for having got an opportunity to convey my sincere thanks

to entire people who devoted their valuable time to help me in the duration

of training and project work. They extend their support, assistance and

enable me to complete the project work successfully. First I would like to

express the profound sense of gratitude to Mr.

SA (Training Head) for being a source of inspiration and providing me with

necessary guidance whenever I needed it, despite his busy schedule. Words

simply cannot express the gratitude and indebtedness to him. I would also

like to thank Mr. V&&&&&&&& who was my mentor during my stay at *****,

who helped me a lot in providing me with resources and helping me in all the

ways he could during the training. Index Sno| Topic| page| 1| Company

Profile| 4| 2| Basics of PHP5| 6| 3| Basics of cake PHP| 18| 4| Implementation

of Cake PHP| 44| 5| Conclusion| 50| 6| Joining letter| 51| 7| Weekly Reports|

52| | | | | | | | | | | | Company Profile PHP 5 Introduction With the advent of PHP

5, the object model was rewritten to allow for better performance and more

features. This was a major change from PHP 4. PHP 5 has a full object model.

Some of the prominent features in PHP 5, include are

of visibility, abstract and final classes and methods, additional magic

methods, interfaces, cloning and typehinting. The Basics class Basic class

definitions begin with the keyword class, followed by a class name, followed

https://assignbuster.com/cake-php/

 Cake php – Paper Example Page 3

by a pair of curly braces which enclose the definitions of the properties and

methods belonging to the class.

The class name can be any valid label which is a not a PHP reserved word. A

valid class name starts with a letter or underscore, followed by any number

of letters, numbers, or underscores. A class may contain its

own constants, variables (called " properties"), and functions (called "

methods"). --- Example: Simple Class

definition var; } } ?> The pseudo-variable $this is available when a method

is called from within an object context. this is a reference to the calling

object (usually the object to which the method belongs, but possibly another

object, if the method is called statically from the context of a secondary

object). new To create an instance of a class, the new keyword must be

used. Classes should be defined before instantiation. If a string containing

the name of a class is used with new, a new instance of that class will be

created. If the class is in a namespace, its fully qualified name must be used

when doing this. --- Example: Creating an

instance In the class context, it is possible to create a new object by new

self and new parent. When assigning an already created instance of a class

to a new variable, the new variable will access the same instance as the

object that was assigned. This behaviour is the same when passing instances

to a function. A copy of an already created object can be made by cloning it.

extends A class can inherit the methods and properties of another class by

using the keyword extends in the class declaration.

https://assignbuster.com/cake-php/

 Cake php – Paper Example Page 4

It is not possible to extend multiple classes; a class can only inherit from one

base class. The inherited methods and properties can be overridden by

redeclaring them with the same name defined in the parent class. However,

if the parent class has defined a method as final, that method may not be

overridden. It is possible to access the overridden methods or static

properties by referencing them with parent::.

--- Example: Simple Class Inheritance

displayVar(); ?> --- The above example will

output: Extending class a default value Properties Class member variables

are called " properties". They are defined by using one of the

keywords public, protected, or private, followed by a normal variable

declaration. This declaration may include an initialization, but this

initialization must be a constant value--that is, it must be able to be

evaluated at compile time and must not depend on run-time information in

order to be evaluated.

Within class methods the properties, constants, and methods may be

accessed by using the form $this-> property (where property is the name of

the property) unless the access is to a static property within the context of a

static class method, in which case it is accessed using the formself::

$property. The pseudo-variable $this is available inside any class method

when that method is called from within an object context. $this is a

reference to the calling object (usually the object to which the method

belongs, but possibly another object, if the method is called statically from

the context of a secondary object).

https://assignbuster.com/cake-php/

 Cake php – Paper Example Page 5

Class Constants It is possible to define constant values on a per-class basis

remaining the same and unchangeable. Constants differ from normal

variables in that you don't use the $ symbol to declare or use them. The

value must be a constant expression, not (for example) a variable, a

property, a result of a mathematical operation, or a function call.

--- Example: Defining and using a constant

By calling this function the scripting engine is given a last chance to load the

class before PHP fails with an error. ---

Example: Autoload example --- This

example attempts to load the classes MyClass1 and MyClass2 from the

files MyClass1. php and MyClass2. php respectively. Constructors and

Destructors Constructor void __construct ([mixed $args [, $...]])

PHP 5 allows developers to declare constructor methods for classes. Classes

which have a constructor method call this method on each newly-created

object, so it is suitable for any initialization that the object may need before

it is used. Destructor void __destruct (void) PHP 5 introduces a destructor

concept similar to that of other object-oriented languages, such as C++. The

destructor method will be called as soon as all references to a particular

object are removed or when the object is explicitly destroyed or in any order

in shutdown sequence. Like constructors, parent destructors will not be

called implicitly by the engine.

In order to run a parent destructor, one would have to explicitly call parent::

__destruct() in the destructor body. The destructor will be called even if

script execution is stopped using exit(). Calling exit() in a destructor will

https://assignbuster.com/cake-php/

 Cake php – Paper Example Page 6

prevent the remaining shutdown routines from executing. Visibility The

visibility of a property or method can be defined by prefixing the declaration

with the keywords public, protected or private. Class members declared

public can be accessed everywhere. Members declared protected can be

accessed only within the class itself and by inherited and parent classes.

Members declared as private may only be accessed by the class that defines

the member. Property Visibility Class properties must be defined as public,

private, or protected. If declared using var, the property will be defined as

public. Method Visibility Class methods may be defined as public, private, or

protected. Methods declared without any explicit visibility keyword are

defined as public. Visibility from other objects Objects of the same type will

have access to each others private and protected members even though

they are not the same instances.

This is because the implementation specific details are already known when

inside those objects. Object Inheritance Inheritance is a well-established

programming principle, and PHP makes use of this principle in its object

model. This principle will affect the way many classes and objects relate to

one another. For example, when you extend a class, the subclass inherits all

of the public and protected methods from the parent class. Unless a class

overrides those methods, they will retain their original functionality.

This is useful for defining and abstracting functionality, and permits the

implementation of additional functionality in similar objects without the need

to reimplement all of the shared functionality.

--- Example #1 Inheritance Example

https://assignbuster.com/cake-php/

 Cake php – Paper Example Page 7

printItem('baz'); // Output: 'Foo: baz' $foo->

printPHP(); // Output: 'PHP is great' $bar->

printItem('baz'); // Output: 'Bar: baz' $bar->

printPHP(); // Output: 'PHP is great' ?> Scope Resolution Operator (::) The

Scope Resolution Operator or in simpler terms, the double colon, is a token

that allows access to static, constant, and overridden properties or methods

of a class. When referencing these items from outside the class definition,

use the name of the class. When an extending class overrides the parents

definition of a method, PHP will not call the parent's method.

It's up to the extended class on whether or not the parent's method is called.

This also applies to Constructors and Destructors, Overloading,

and Magic method definitions. Static Keyword Declaring class properties or

methods as static makes them accessible without needing an instantiation of

the class. A property declared as static can not be accessed with an

instantiated class object (though a static method can). Because static

methods are callable without an instance of the object created, the pseudo-

variable $this is not available inside the method declared as static.

Static properties cannot be accessed through the object using the arrow

operator -;. Class Abstraction PHP 5 introduces abstract classes and

methods. Classes defined as abstract may not be instantiated, and any class

that contains at least one abstract method must also be abstract. Methods

defined as abstract simply declare the method's signature - they cannot

define the implementation. When inheriting from an abstract class, all

methods marked abstract in the parent's class declaration must be defined

https://assignbuster.com/cake-php/

 Cake php – Paper Example Page 8

by the child; additionally, these methods must be defined with the same (or

a less restricted) visibility.

For example, if the abstract method is defined as protected, the function

implementation must be defined as either protected or public, but not

private. Object Interfaces Object interfaces allow you to create code which

specifies which methods a class must implement, without having to define

how these methods are handled. Interfaces are defined using the interface

keyword, in the same way as a standard class, but without any of the

methods having their contents defined. All methods declared in an interface

must be public, this is the nature of an interface. implements To implement

an interface, the implements operator is used.

All methods in the interface must be implemented within a class; failureto do

so will result in a fatal error. Classes may implement more than one interface

if desired by separating each interface with a comma. Constants Its possible

for interfaces to have constants. Interface constants works exactly like class

constants except they cannot be overridden by a class/interface that inherits

it. Overloading Overloading in PHP provides means to dynamically " create"

properties and methods. These dynamic entities are processed via magic

methods one can establish in a class for various action types.

The overloading methods are invoked when interacting with properties or

methods that have not been declared or are not visible in the current scope

All overloading methods must be defined as public. PHP's interpretation of "

overloading" is different than most object oriented languages. Overloading

traditionally provides the ability to have multiple methods with the same

https://assignbuster.com/cake-php/

 Cake php – Paper Example Page 9

name but different quantities and types of arguments. Property overloading

__set() is run when writing data to inaccessible properties. __get() is utilized

for reading data from inaccessible properties. _isset() is triggered by

calling isset() or empty() on inaccessible properties. __unset() is invoked

when unset() is used on inaccessible properties. Method overloading

mixed __call (string $name , array $arguments)

mixed __callStatic (string $name , array $arguments) __call() is triggered

when invoking inaccessible methods in an object context. __callStatic() is

triggered when invoking inaccessible methods in a static context. Patterns

Patterns are ways to describe best practices and good designs. They show a

flexible solution to common programming problems. Factory

The Factory pattern allows for the instantiation of objects at runtime. It is

called a Factory Pattern since it is responsible for " manufacturing" an object.

A Parameterized Factory receives the name of the class to instantiate as

argument. --- Example: Parameterized

Factory Method -- Defining this method in a

class allows drivers to be loaded on the fly. If the Example class was a

database abstraction class, loading a MySQLand SQLite driver could be done

as follows: Singleton The Singleton ensures that there can be only one

instance of a Class and provides a global access point to that instance The

Singleton pattern is often implemented in Database Classes, Loggers, Front

Controllers or Request and Response objects.

Magic Methods The function

names __construct, __destruct, __call, __callStatic, __get, __set, __isset, __uns

https://assignbuster.com/cake-php/

 Cake php – Paper Example Page 10

et, __sleep, __wakeup, __toString, __invoke, __set_state and __clone are

magical in PHP classes. You cannot have functions with these names in any

of your classes unless you want the magic functionality associated with

them. __sleep and __wakeup serialize() checks if your class has a function

with the magic name __sleep. If so, that function is executed prior to any

serialization. It can clean up the object and is supposed to return an array

with the names of all variables of that object that should be serialized.

If the method doesn't return anything then NULL is serialized

and E_NOTICE is issued. __toString The __toString method allows a class to

decide how it will react when it is treated like a string. For example,

what echo $obj; will print. This method must return a string, as otherwise a

fatal E_RECOVERABLE_ERROR level error is emitted. __invoke

The __invoke method is called when a script tries to call an object as a

function. __set_state The only parameter of this method is an array

containing exported properties in the form array('property' =; value, ...).

Final Keyword

PHP 5 introduces the final keyword, which prevents child classes from

overriding a method by prefixing the definition with final. If the class itself is

being defined final then it cannot be extended. Object Cloning Creating a

copy of an object with fully replicated properties is not always the wanted

behavior. A good example of the need for copy constructors, is if your object

holds a reference to another object which it uses and when you replicate the

parent object you want to create a new instance of this other object so that

the replica has its own separate copy.

https://assignbuster.com/cake-php/

 Cake php – Paper Example Page 11

An object copy is created by using the clone keyword (which calls the

object's __clone() method if possible). An object's __clone() method cannot

be called directly. --- $copy_of_object =

clone $object; When an object is cloned, PHP 5 will perform a shallow copy of

all of the object's properties. Any properties that are references to other

variables, will remain references. Once the cloning is complete, if a __clone()

method is defined, then the newly created object's __clone() method will be

called, o allow any necessary properties that need to be changed. Type

Hinting PHP 5 introduces Type Hinting. Functions are now able to force

parameters to be objects (by specifying the name of the class in the function

prototype) or arrays (since PHP 5. 1). However, if NULL is used as the default

parameter value, it will be allowed as an argument for any later call. Objects

and references One of the key-points of PHP5 OOP that is often mentioned is

that " objects are passed by references by default". This is not completely

true. This section rectifies that general thought using some examples.

A PHP reference is an alias, which allows two different variables to write to

the same value. As of PHP5, an object variable doesn't contain the object

itself as value anymore. It only contains an object identifier which allows

object accessors to find the actual object. When an object is sent by

argument, returned or assigned to another variable, the different variables

are not aliases: they hold a copy of the identifier, which points to the same

object. Cake PHP CakePHP is a free, open-source, rapid

development framework for PHP.

https://assignbuster.com/cake-php/

 Cake php – Paper Example Page 12

It’s a foundational structure for programmers to create web applications. The

primary goal of using cake PHP is to enable us to work in a structured and

rapid manner–without loss of flexibility. CakePHP takes the monotony out of

web development. It provides us with all the tools one needs to get started

coding. Instead of reinventing the wheel every time one sits down to a new

project, CakePHP helps make the development very easy and rapid and more

modularized. CakePHP has an active developer team and community,

bringing great value to the project. Understanding Model-View-Controller

CakePHP follows the MVC software design pattern. Programming using MVC

separates your application into three main parts: The Model represents the

application data The View renders a presentation of model data The

Controller handles and routes requests made by the client A Basic MVC

Request Figure: 1 shows an example of a bare-bones MVC request in

CakePHP. To illustrate, assume a client just clicked on the “ Buy A Custom

Cake Now! ” link on your application’s home page. Client clicks the link

pointing to http://www. example. com/cakes/buy, and his browser makes a

request to your web server.

The dispatcher checks the request URL (/cakes/buy), and hands the request

to the correct controller. The controller performs application specific logic.

For example, it may check to see if Client has logged in. The controller also

uses models to gain access to the application’s data. Models usually

represent database tables, but they could also

represent LDAP entries, RSS feeds, or files on the system. In this example,

the controller uses a model to fetch Client’s last purchases from the

https://assignbuster.com/cake-php/

 Cake php – Paper Example Page 13

database. Once the controller has worked its magic on the data, it hands it to

a view.

The view takes this data and gets it ready for presentation to the client.

Views in CakePHP are usually in HTML format, but a view could just as easily

be a PDF, XML document, or JSON object depending on your needs. Once the

view has used the data from the controller to build a fully rendered view, the

content of that view is returned to Client’s browser. Almost every request to

your application will follow this basic pattern. We'll add some details later on

which are specific to CakePHP, so keep this in mind as we proceed. Benefits

Why use MVC?

Because it is a tried and true software design pattern that turns an

application into a maintainable, modular, rapidly developed package.

Crafting application tasks into separate models, views, and controllers makes

your application very light on its feet. New features are easily added, and

new faces on old features are a snap. The modular and separate design also

allows developers and designers to work simultaneously, including the ability

to rapidly prototype. Separation also allows developers to make changes in

one part of the application without affecting others.

Basic principles of Cake PHP The CakePHP framework provides a robust base

for our application. It can handle every aspect, from the user’s initial request

all the way to the final rendering of a web page. And since the framework

follows the principles of MVC, it allows us to easily customize and extend

most aspects of your application. The framework also provides a basic

organizational structure, from filenames to database table names, keeping

https://assignbuster.com/cake-php/

 Cake php – Paper Example Page 14

your entire application consistent and logical. This concept is simple but

powerful. Cake PHP structure

CakePHP features Controller, Model, and View classes, but it also features

some additional classes and objects that make development in MVC a little

quicker and more enjoyable. Components, Behaviors, and Helpers are

classes that provide extensibility and reusability to quickly add functionality

to the base MVC classes in your applications. Controllers

Extensions(Components) A Component is a class that aids in controller logic.

If you have some logic you want to share between controllers (or

applications), a component is usually a good fit. As an example, the core

EmailComponent class makes creating and sending emails a snap.

Rather than writing a controller method in a single controller that performs

this logic, you can package the logic so it can be shared. Controllers are also

fitted with callbacks. These callbacks are available for your use, just in case

you need to insert some logic between CakePHP’s core operations. Callbacks

available include: * beforeFilter(), executed before any controller action logic

* beforeRender(), executed after controller logic, but before the view is

rendered * afterFilter(), executed after all controller logic, including the view

render.

There may be no difference between afterRender() and afterFilter() unless

you’ve manually made a call to render() in your controller action and have

included some logic after that call. View Extensions (Helpers) Helper is a

class that aids in view logic. Much like a component used among controllers,

helpers allow presentational logic to be accessed and shared between views.

https://assignbuster.com/cake-php/

 Cake php – Paper Example Page 15

Most applications have pieces of view code that are used repeatedly.

CakePHP facilitates view code reuse with layouts and elements. By default,

every view rendered by a controller is placed inside a layout.

Elements are used when small snippets of content need to be reused in

multiple views. Model Extensions (“ Behaviors”) Similar to Components and

Helpers, " Behaviors" work as ways to add common functionality between

models. For example, if you store user data in a tree structure, you can

specify your " User" model as behaving like a tree, and gain free

functionality for removing, adding, and shifting nodes in your underlying tree

structure. Models also are supported by another class called a DataSource.

DataSources are an abstraction that enable models to manipulate different

types of data consistently.

While the main source of data in a CakePHP application is often a database,

you might write additional DataSources that allow your models to represent

RSS feeds, CSV files, LDAP entries, or iCal events. Just like controllers,

models are featured with callbacks as well. A Typical CakePHP Request let’s

imagine that our client just clicked on the “ Buy A Custom Cake Now! ” link

on a CakePHP application’s landing page. Typical Cake Request. 1. Client

clicks the link pointing to http://www. example. com/cakes/buy, and his

browser makes a request to your web server. . The Router parses the URL in

order to extract the parameters for this request: the controller, action, and

any other arguments that will affect the business logic during this request. 3.

Using routes, a request URL is mapped to a controller action (a method in a

specific controller class). In this case, it’s the buy() method of the

https://assignbuster.com/cake-php/

 Cake php – Paper Example Page 16

CakesController. The controller’s beforeFilter() callback is called before any

controller action logic is executed. 4. The controller may use models to gain

access to the application’s data.

In this example, the controller uses a model to fetch Client’s last purchases

from the database. Any applicable model callbacks, behaviors, and

DataSources may apply during this operation. While model usage is not

required, all CakePHP controllers initially require at least one model. 5. After

the model has retrieved the data, it is returned to the controller. Model

callbacks may apply. 6. The controller may use components to further refine

the data or perform other operations (session manipulation, authentication,

or sending emails, for example). 7.

Once the controller has used models and components to prepare the data

sufficiently, that data is handed to the view using the controller’s set()

method. Controller callbacks may be applied before the data is sent. The

view logic is performed, which may include the use of elements and/or

helpers. By default, the view is rendered inside of a layout. 8. Additional

controller callbacks (like afterFilter) may be applied. The complete, rendered

view code is sent to Client’s browser. CakePHP Folder Structure After

downloading and extracted CakePHP, these are the files and folders one

should see: * app cake * vendors * plugins * . htaccess * index. php *

README Three main folders are: * The app folder will be where you work

your magic: it’s where your application’s files will be placed. * The cake

folder is where we’ve worked our magic. Make a personal commitment not to

edit files in this folder. We can’t help you if you’ve modified the core. *

https://assignbuster.com/cake-php/

 Cake php – Paper Example Page 17

Finally, the vendors folder is where you’ll place third-party PHP libraries you

need to use with your CakePHP applications. The App Folder CakePHP’s app

folder is where you will do most of your application development.

Let’s look a little closer at the folders inside of app. config| Holds the (few)

configuration files CakePHP uses. Database connection details,

bootstrapping, core configuration files and more should be stored here. |

controllers| Contains your application’s controllers and their components. |

Libs| Contains 1st party libraries that do not come from 3rd parties or

external vendors. This allows you to separate your organization's internal

libraries from vendor libraries. | locale| Stores string files for

internationalization. | models| Contains your application’s models, behaviors,

and datasources. plugins| Contains plugin packages. | tmp| This is where

CakePHP stores temporary data. The actual data it stores depends on how

you have CakePHP configured, but this folder is usually used to store model

descriptions, logs, and sometimes session information. Make sure that this

folder exists and that it is writable, otherwise the performance of your

application will be severely impacted. In debug mode, CakePHP will warn you

if it is not the case. | vendors| Any third-party classes or libraries should be

placed here. Doing so makes them easy to access using the App::

import('vendor', 'name') function.

Keen observers will note that this seems redundant, as there is also a

vendors folder at the top level of our directory structure. We'll get into the

differences between the two when we discuss managing multiple

applications and more complex system setups. | views| Presentational files

https://assignbuster.com/cake-php/

 Cake php – Paper Example Page 18

are placed here: elements, error pages, helpers, layouts, and view files. |

webroot| In a production setup, this folder should serve as the document root

for your application. Folders here also serve as holding places for CSS

stylesheets, images, and JavaScript files| CakePHP Conventions

CakePHP’s conventions have been distilled out of years of web development

experience and best practices. CakePHP Conventions File and Classname

Conventions In general, filenames are underscored while classnames are

CamelCased. So if you have a class MyNiftyClass, then in Cake, the file

should be named my_nifty_class. php. Below are examples of how to name

the file for each of the different types of classes you would typically use in a

CakePHP application: Each file would be located in or under (can be in a

subfolder) the appropriate folder in your app folder. Model and Database

Conventions

Model classnames are singular and CamelCased. Person, BigPerson, and

ReallyBigPerson are all examples of conventional model names. Table names

corresponding to CakePHP models are plural and underscored. The

underlying tables for the above mentioned models would be people,

big_people, and really_big_people, respectively. Field names with two or

more words are underscored like, first_name. Controller Convention

Controller classnames are plural, CamelCased, and end in Controller.

PeopleController and LatestArticlesController are both examples of

conventional controller names. View Conventions

View template files are named after the controller functions they display, in

an underscored form. The getReady() function of the PeopleController class

https://assignbuster.com/cake-php/

 Cake php – Paper Example Page 19

will look for a view template in /app/views/people/get_ready. ctp. Developing

with CakePHP Installation Installing CakePHP can be as simple as slapping it

in your web server’s document root, or as complex and flexible as you wish.

There are three main installation types for CakePHP: development,

production, and advanced. * Development: easy to get going, URLs for the

application include the CakePHP installation directory name, and less secure.

Production: Requires the ability to configure the web server’s document root,

clean URLs, very secure. * Advanced: With some configuration, allows you to

place key CakePHP directories in different parts of the filesystem, possibly

sharing a single CakePHP core library folder amongst many CakePHP

applications. Development A development installation is the fastest method

to setup Cake. This example will help you install a CakePHP application and

make it available at http://www. example. com/cake_1_3/. We assume for the

purposes of this example that your document root is set to /var/www/html.

Unpack the contents of the Cake archive into /var/www/html. You now have a

folder in your document root named after the release you've downloaded (e.

g. cake_1. 3. 0). Rename this folder to cake_1_3. Your development setup

will look like this on the file system: * /var/www/html * /cake_1_3 * /app *

/cake * /vendors * /. htaccess * /index. php * /README If your web server is

configured correctly, you should now find your Cake application accessible at

http://www. example. com/cake_1_3/. ---

Controllers Introduction

A controller is used to manage the logic for a part of your application. Most

commonly, controllers are used to manage the logic for a single model. For

https://assignbuster.com/cake-php/

 Cake php – Paper Example Page 20

example, if you were building a site for an online bakery, you might have a

RecipesController and a IngredientsController managing your recipes and

their ingredients. In CakePHP, controllers are named after the model they

handle, in plural form. Your application's controllers are classes that extend

the CakePHP AppController class, which in turn extends a core Controller

class, which are part of the CakePHP library.

The AppController class can be defined in /app/app_controller. php and it

should contain methods that are shared between all of your application’s

controllers. Controllers can include any number of methods which are usually

referred to as actions. Actions are controller methods used to display views.

An action is a single method of a controller. CakePHP’s dispatcher calls

actions when an incoming request matches a URL to a controller’s action

--- The App Controller As stated in the

introduction, the AppController class is the parent class to all of your

application's controllers.

AppController itself extends the Controller class included in the CakePHP

core library. As such, AppController is defined in

/cake/libs/controller/app_controller. php or /app/app_controller. php. If

/app/app_controller. php does not exist then copy from /cake location before

customizing for application. It contains a skeleton definition:

--- 1. --

Controller attributes and methods created in your AppController will be

available to all of your application's controllers. It is the ideal place to create

code that is common to all of your controllers. Components (which you'll

https://assignbuster.com/cake-php/

 Cake php – Paper Example Page 21

learn about later) are best used for code that is used in many (but not

necessarily all) controllers.

While normal object-oriented inheritance rules apply, CakePHP also does a

bit of extra work when it comes to special controller attributes, like the list of

components or helpers used by a controller. In these cases, AppController

value arrays are merged with child controller class arrays.

--- The Pages Controller CakePHP core ships

with a default controller called the Pages Controller

(cake/libs/controller/pages_controller. php). The home page you see after

installation is generated using this controller. It is generally used to serve

static pages.

Eg. If you make a view file app/views/pages/about_us. ctp you can access it

using url http://example. com/pages/about_us

--- Controller Attributes $name People using

PHP4 should start out their controller definitions using the $name attribute.

The $name attribute should be set to the name of the controller. Usually this

is just the plural form of the primary model the controller uses. This takes

care of some PHP4 classname oddities and helps CakePHP resolve naming.

--- See comments for this section

$components, $helpers and $uses

The next most often used controller attributes tell CakePHP what helpers,

components, and models you’ll be using in conjunction with the current

controller. Using these attributes make MVC classes given by $components

and $uses available to the controller as class variables ($this-; ModelName,

https://assignbuster.com/cake-php/

 Cake php – Paper Example Page 22

for example) and those given by $helpers to the view as an object reference

variable ($helpername). Controllers have access to their primary model

available by default. Our RecipesController will have the Recipe model class

available at $this-; Recipe, and our ProductsController also features the

Product model at $this-; Product.

However, when allowing a controller to access additional models through the

$uses variable, the name of the current controller's model must also be

included. This is illustrated in the example below. The Html and Form Helpers

are always available by default. But if you choose to define your own

$helpers array in AppController, make sure to include Html and Form if you

want them still available by default in your own Controllers. The Session

Helper and Component may be useful to manage sessions and state in your

application. Let’s look at how to tell a CakePHP controller that you plan to

use additional MVC classes. -- See

comments for this section Page-related Attribute: $layout A few attributes

exist in CakePHP controllers that give you control over how your view is set

inside of a layout. The $layout attribute can be set to the name of a layout

saved in /app/views/layouts. You specify a layout by setting $layout equal to

the name of the layout file minus the . ctp extension. If this attribute has not

been defined, CakePHP renders the default layout, default. ctp. If you

haven’t defined one at /app/views/layouts/default. ctp, CakePHP’s core

default layout will be rendered. --- lt;? php

--- --- //

Using $layout to define an alternate layout

--- --- class

https://assignbuster.com/cake-php/

 Cake php – Paper Example Page 23

RecipesController extends AppController

{ --- function quickSave()

{ --- $this-> layout = 'ajax';

--- } --- }

--- -- ?>

See comments for this section The Parameters Attribute ($params)

Controller parameters are available at $this-> params in your CakePHP

controller. This variable is used to provide access to information about the

current request. The most common usage of $this-> params is to get access

to information that has been handed to the controller via POST or GET

operations. See comments for this section form: $this-> params['form'] Any

POST data from any form is stored here, including information also found in

$_FILES. See comments for this section admin: $this-> params['admin']

Is set to 1 if the current action was invoked via admin routing. See

comments for this section bare: $this-> params['bare'] Stores 1 if the current

layout is empty, 0 if not. See comments for this section isAjax: $this->

params['isAjax'] Stores 1 if the current request is an ajax call, 0 if not. This

variable is only set if the RequestHandler Component is being used in the

controller. See comments for this section controller: $this->

params['controller'] Stores the name of the current controller handling the

request. For example, if the URL /posts/view/1 was requested, $this->

params['controller'] would equal " posts".

See comments for this section action: $this-> params['action'] Stores the

name of the current action handling the request. For example, if the URL

https://assignbuster.com/cake-php/

 Cake php – Paper Example Page 24

/posts/view/1 was requested, $this-> params['action'] would equal " view".

See comments for this section pass: $this-> params['pass'] Returns an array

(numerically indexed) of URL parameters after the Action. See comments for

this section url: $this-> params['url'] Stores the current URL requested, along

with key-value pairs of get variables. For example, if the URL /posts/view/?

var1= 3&var2= 4 was called, $this-> params['url'] would contain: See

comments for this section ata: $this-> data Used to handle POST data sent

from the FormHelper forms to the controller.

--- // The FormHelper is used to create a

form element: --- echo $this-> Form->

text('User. first_name'); See comments for this section named $this->

params['named'] Stores any named parameters in the url query string in the

form /key: value/. For example, if the URL /posts/view/var1: 3/var2: 4 was

requested, $this-> params['named'] would be an array containing: See

comments for this section -- Controller

Methods . Interacting with Views Controllers interact with the view in a

number of ways. First they are able to pass data to the views, using set().

You can also decide which view class to use, and which view file should be

rendered from the controller. See comments for this section set: set(string

$var, mixed $value) The set() method is the main way to send data from

your controller to your view. Once you've used set(), the variable can be

accessed in your view. --- set('color', 'pink');

--- ---

//Then, in the view, you can utilize the data:

https://assignbuster.com/cake-php/

 Cake php – Paper Example Page 25

--- ?> ---

You have selected ;? php echo $color; ? ; icing for the cake. The set() method

also takes an associative array as its first parameter. This can often be a

quick way to assign a set of information to the view. See comments for this

section render: render(string $action, string $layout, string $file) The

render() method is automatically called at the end of each requested

controller action. This method performs all the view logic (using the data

you’ve given in using the set() method), places the view inside its layout and

serves it back to the end user.

Although CakePHP will automatically call it (unless you’ve set $this-;

autoRender to false) after every action’s logic, you can use it to specify an

alternate view file by specifying an action name in the controller using

$action. See comments for this section Rendering a specific view In your

controller you may want to render a different view than what would

conventionally be done. You can do this by calling render() directly. Once

you have called render() CakePHP will not try to re-render the view.

--- lass PostsController extends

AppController { --- function my_action()

{ --- $this-> render('custom_file');

--- } --- }

See comments for this section Flow Control See comments for this section

redirect: redirect(mixed $url, integer $status, boolean $exit) The flow control

https://assignbuster.com/cake-php/

 Cake php – Paper Example Page 26

method you’ll use most often is redirect(). This method takes its first

parameter in the form of a CakePHP-relative URL.

When a user has successfully placed an order, you might wish to redirect

them to a receipt screen. --- function

placeOrder() { ---

--- //Logic for finalizing order goes here

--- ---

if($success) { --- $this->

redirect(array('controller' => 'orders', 'action' => 'thanks'));

--- else

{ --- $this-> redirect(array('controller' =>

'orders', 'action' => 'confirm')); --- }

--- } The second parameter of redirect()

allows you to define an HTTP status code to accompany the redirect. You

may want to use 301 (moved permanently) or 303 (see other), depending on

the nature of the redirect. The method will issue an exit() after the redirect

unless you set the third parameter to false. See comments for this section

flash lash(string $message, string $url, integer $pause, string $layout) Like

redirect(), the flash() method is used to direct a user to a new page after an

operation. The flash() method is different in that it shows a message before

passing the user on to another URL. The first parameter should hold the

message to be displayed, and the second parameter is a CakePHP-relative

URL. CakePHP will display the $message for $pause seconds before

forwarding the user on. If there's a particular template you'd like your

https://assignbuster.com/cake-php/

 Cake php – Paper Example Page 27

flashed message to use, you may specify the name of that layout in the

$layout parameter. See comments for this section

Callbacks CakePHP controllers come fitted with callbacks you can use to

insert logic just before or after controller actions are rendered. beforeFilter()

This function is executed before every action in the controller. It's a handy

place to check for an active session or inspect user permissions.

beforeRender() Called after controller action logic, but before the view is

rendered. This callback is not used often, but may be needed if you are

calling render() manually before the end of a given action. afterFilter() Called

after every controller action, and after rendering is complete. This is the last

controller method to run.

CakePHP also supports callbacks related to scaffolding.

_beforeScaffold($method) $method name of method called example index,

edit, etc. _afterScaffoldSave($method) $method name of method called

either edit or update. See comments for this section See comments for this

section See comments for this section loadModel loadModel(string

$modelClass, mixed $id) The loadModel function comes handy when you

need to use a model which is not the controller's default model or its

associated model. --- $this->

loadModel('Article'); --- recentArticles =

$this-> Article-> find('all', array('limit' => 5, 'order' => 'Article. created

DESC')); Components Components are packages of logic that are shared

between controllers. If you find yourself wanting to copy and paste things

between controllers, you might consider wrapping some functionality in a

https://assignbuster.com/cake-php/

 Cake php – Paper Example Page 28

component. CakePHP also comes with a fantastic set of core components

you can use to aid in: * Security * Sessions * Access control lists * Emails *

Cookies * Authentication * Request handling Each of these core components

are detailed in their own chapters. For now, we’ll show you how to create

your own components.

Creating components keeps controller code clean and allows you to reuse

code between projects. --- Creating

Components Suppose our online application needs to perform a complex

mathematical operation in many different parts of the application. We could

create a component to house this shared logic for use in many different

controllers. The first step is to create a new component file and class. Create

the file in /app/controllers/components/math. php. The basic structure for the

component would look something like this:

--- 1. ---

Including Components in your Controllers Once our component is finished,

we can use it in the application's controllers by placing the component's

name (minus the " Component" part) in the controller's $components array.

The controller will automatically be given a new attribute named after the

component, through which we can access an instance of it:

--- /* Make the new component available at

$this-> Math, --- as well as the standard

$this-> Session */ --- var $components =

array('Math', 'Session'); 1. --- var

https://assignbuster.com/cake-php/

 Cake php – Paper Example Page 29

$components = array('Math', 'Session'); See comments for this section See

comments for this section Using other Components in your Component

Sometimes one of your components may need to use another. You can

include other components in your component the exact same way you

include them in controllers: Use the $components var.

--- Existing-> foo();

--- } ---

--- function bar()

{ --- // ... ---

} --- } --- ?

> --- Models

Models represent data and are used in CakePHP applications for data access.

A model usually represents a database table but can be used to access

anything that stores data such as files, LDAP records, iCal events, or rows in

a CSV file. A model can be associated with other models. For example, a

Recipe may be associated with the Author of the recipe as well as the

Ingredient in the recipe. A Model represents your data model. In object-

oriented programming a data model is an object that represents a " thing",

like a car, a person, or a house. A blog, for example, may have many blog

posts and each blog post may have many comments.

The Blog, Post, and Comment are all examples of models, each associated

with another. This intermediate class, AppModel, is empty and if you haven't

created your own is taken from within the /cake/ folder. Overriding the

AppModel allows you to define functionality that should be made available to

https://assignbuster.com/cake-php/

 Cake php – Paper Example Page 30

all models within your application. To do so, you need to create your own

app_model. php file that resides in the root of the /app/ folder. With your

model defined, it can be accessed from within your Controller. CakePHP will

automatically make the model available for access when its name matches

that of the controller. -- Ingredient->

find('all'); --- $this-> set('ingredients',

$ingredients); --- }

--- ---

--- ?> ---

Retrieving Your Data from databases Find: find($type, $params) Find is the

multifunctional workhorse of all model data-retrieval functions. $type can be

either 'all', 'first', 'count', 'list', 'neighbors' or 'threaded'. The default find type

is 'first'. $params is used to pass all parameters to the various finds, and has

the following possible keys by default - all of which are optional:

--- rray(---

'conditions' => array('Model. field' => $thisValue), //array of conditions

--- 'recursive' => 1, //int

--- 'fields' => array('Model. field1',

'DISTINCT Model. field2'), //array of field names

--- 'order' => array('Model. created', 'Model.

field3 DESC'), //string or array defining order

--- 'group' => array('Model. ield'), //fields to

GROUP BY --- 'limit' => n, //int

--- 'page' => n, //int

--- 'offset'=> n, //int

https://assignbuster.com/cake-php/

 Cake php – Paper Example Page 31

--- 'callbacks' => true //other possible

values are false, 'before', 'after' ---) 1.

--- array(2.

--- 'conditions' => array('Model. field' =>

$thisValue), //array of conditions 3. --

'recursive' => 1, //int 4. --- 'fields' =>

array('Model. field1', 'DISTINCT Model. field2'), //array of field names 5.

--- 'order' => array('Model. created', 'Model.

field3 DESC'), //string or array defining order 6.

--- 'group' => array('Model. field'), //fields to

GROUP BY 7. --- 'limit' => n, //int 8.

--- page' =; n, //int 9.

--- 'offset'=> n, //int 10.

--- 'callbacks' => true //other possible

values are false, 'before', 'after' 11. ---) See

comments for this section find('first'): find('first', $params) 'first' is the

default find type, and will return one result, you'd use this for any use where

you expect only one result. If no results are found, false is returned.

find('count'): find('count', $params) find('count', $params) returns an integer

value.

There are no additional parameters used by find('count'). See comments for

this section find('all'): find('all', $params) find('all') returns an array of

(potentially multiple) results. It is in fact the mechanism used by all find()

variants, as well as paginate. find('list'): find('list', $params) find('list',

$params) returns an indexed array, useful for any use where you would want

https://assignbuster.com/cake-php/

 Cake php – Paper Example Page 32

a list such as for populating input select boxes. find('threaded'):

find('threaded', $params) find('threaded', $params) returns a nested array,

and is appropriate if you want to use the parent_id field of your model data

to build nested results. ind('neighbors'): find('neighbors', $params)

'neighbors' will perform a find similar to 'first', but will return the row before

and after the one you request. See comments for this section findBy findBy;

fieldName;(string $value); The findBy magic functions also accept some

optional parameters: findBy; fieldName;(string $value[, mixed $fields[, mixed

$order]]); These magic functions can be used as a shortcut to search your

tables by a certain field. Just add the name of the field (in CamelCase format)

to the end of these functions, and supply the criteria for that field as the first

parameter.

PHP5 findBy; x; Example | Corresponding SQL Fragment | $this-; Product-;

findByOrderStatus(‘ 3’); | Product. order_status = 3 | $this-; Recipe-;

findByType(‘ Cookie’); | Recipe. type = ‘ Cookie’ | $this-; User-;

findByLastName(‘ Anderson’); | User. last_name = ‘ Anderson’ | $this-; Cake-;

findById(7); | Cake. id = 7 | $this-; User-; findByUserName(‘ psychic’); | User.

user_name = ‘ psychic’ | See comments for this section query query(string

$query) SQL calls that you can't or don't want to make via other model

methods (this should only rarely be necessary) can be made using the

model's query() method.

See comments for this section field: field(string $name, array $conditions =

null, string $order = null) Returns the value of a single field, specified as

$name, from the first record matched by $conditions as ordered by $order. If

https://assignbuster.com/cake-php/

 Cake php – Paper Example Page 33

no conditions are passed and the model id is set, will return the field value

for the current model result. If no matching record is found returns false.

read(): read($fields, $id) read() is a method used to set the current model

data (Model::$data)--such as during edits--but it can also be used in other

circumstances to retrieve a single record from the database. fields is used to

pass a single field name, as a string, or an array of field names; if left empty,

all fields will be fetched. $id specifies the ID of the record to be read. By

default, the currently selected record, as specified by Model::$id, is used.

Passing a different value to $id will cause that record to be selected.

--- Behaviors Model behaviors are a way to

organize some of the functionality defined in CakePHP models. They allow us

to separate logic that may not be directly related to a model, but needs to be

there.

By providing a simple yet powerful way to extend models, behaviors allow us

to attach functionality to models by defining a simple class variable. That's

how behaviors allow models to get rid of all the extra weight that might not

be part of the business contract they are modeling, or that is also needed in

different models and can then be extrapolated. As an example, consider a

model that gives us access to a database table which stores structural

information about a tree. Removing, adding, and migrating nodes in the tree

is not as simple as deleting, inserting, and editing rows in the table.

Many records may need to be updated as things move around. Rather than

creating those tree-manipulation methods on a per model basis (for every

model that needs that functionality), we could simply tell our model to use

https://assignbuster.com/cake-php/

 Cake php – Paper Example Page 34

the TreeBehavior, or in more formal terms, we tell our model to behave as a

Tree. This is known as attaching a behavior to a model. With just one line of

code, our CakePHP model takes on a whole new set of methods that allow it

to interact with the underlying structure. ---

Views Views are the V in MVC.

Views are responsible for generating the specific output required for the

request. Often this is in the form of HTML, XML, or JSON, but streaming files

and creating PDF's that users can download are also responsibilities of the

View Layer. --- View Templates The view

layer of CakePHP is how you speak to your users. Most of the time your views

will be showing (X)HTML documents to browsers, but you might also need to

serve AMF data to a Flash object, reply to a remote application via SOAP, or

output a CSV file for a user. CakePHP view files are written in plain PHP and

have a default extension of . tp (CakePHP Template). These files contain all

the presentational logic needed to get the data it received from the

controller in a format that is ready for the audience you’re serving to. View

files are stored in /app/views/, in a folder named after the controller that

uses the files, and named after the action it corresponds to. For example, the

view file for the Products controller's " view()" action, would normally be

found in /app/views/products/view. ctp. * layouts: view files that contain

presentational code that is found wrapping many interfaces in your

application. Most views are rendered inside of a layout. * elements: maller,

reusable bits of view code. Elements are usually rendered inside of views. *

helpers: these classes encapsulate view logic that is needed in many places

in the view layer. Among other things, helpers in CakePHP can help you build

https://assignbuster.com/cake-php/

 Cake php – Paper Example Page 35

forms, build AJAX functionality, paginate model data, or serve RSS feeds.

Caching Elements You can take advantage of CakePHP view caching if you

supply a cache parameter. If set to true, it will cache for 1 day. Otherwise,

you can set alternative expiration times. If you render the same element

more than once in a view and have caching enabled be sure to set the 'key'

parameter to a different name each time.

This will prevent each succesive call from overwriting the previous element()

call's cached result. E. g. ---

element('helpbox', array('cache' => array('key' => 'first_use', 'time' => '+1

day'), 'var' => $var)); ---

--- echo $this-> element('helpbox',

array('cache' => array('key' => 'second_use', 'time' => '+1 day'), 'var' =>

$differentVar)); --- > See comments for this

section Requesting Elements from a Plugin If you are using a plugin and wish

to use elements from within the plugin, just specify the plugin parameter. If

the view is being rendered for a plugin controller/action, it will automatically

point to the element for the plugin. If the element doesn't exist in the p

https://assignbuster.com/cake-php/

	Cake php

