
Complete reference
java

Science, Computer Science

https://assignbuster.com/essay-subjects/science/computer-science/
https://assignbuster.com/essay-subjects/science/
https://assignbuster.com/complete-reference-java/
https://assignbuster.com/complete-reference-java/
https://assignbuster.com/

 Complete reference java – Paper Example Page 2

Java 2: The Complete Reference by Patrick Naughton and Herbert Schildt

Osborne/McGraw-Hill © 1999, 1108 pages ISBN: 0072119764 This thorough

reference reads like a helpful friend. Includes servlets, Swing, and more.

Table of Contents Back Cover Synopsis by Rebecca Rohan Java 2: The

Complete Reference blends the expertise found in Java 1: The Complete

Reference with Java 2 topics such as " servlets" and " Swing. " As before,

there's help with Java Beans and migrating from C++ to Java. A special

chapter gives networking basics and breaks out networking-related classes.

This book helps you master techniques by doing as well as reading. Projects

include a multi-player word game with attention paid to network security.

The book is updated where appropriate throughout, and the rhythm of text,

code, tables, and illustrations is superb. It's a valuable resource for the

developer who is elbow-deep in demanding projects. Table of Contents Java

2 Preface - 7 Part l The Java Language - The Complete Reference - 4 Chapter

1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8

Chapter 9 hapter 10 The Genesis of Java - 9 - An Overview of Java - 20 - Data

Types, Variables, and Arrays - 36 - Operators - 57 - Control Statements - 75 -

Introducing Classes - 94 - A Closer Look at Methods and Classes - 111 -

Inheritance - 134 - Packages and Interfaces - 156 - Exception Handling - 174

Chapter 11 - Multithreaded Programming - 188 Chapter 12 - I/O, Applets, and

Other Topics - 214 Part ll The Java Library Chapter 13 - String Handling - 235

Chapter 14 - Exploring java. lang - 255 Chapter 15 - java. util Part 1: The

Collections Framework - 297 Chapter 16 - java. util Part 2: More Utility

Classes - 343 2- Chapter 17 - Input/Output: Exploring java. io - 362 Chapter

18 - Networking - 397 Chapter 19 - The Applet Class - 426 Chapter 20 - Event

https://assignbuster.com/complete-reference-java/

 Complete reference java – Paper Example Page 3

Handling - 443 Chapter 21 - Introducing the AWT: Working with Windows,

Graphics, and Text - 466 Chapter 22 - Using AWT Controls, Layout Managers,

and Menus - 499 Chapter 23 - Images - 543 Chapter 24 - Additional Packages

- 568 Part lll Software Development Using Java Chapter 25 - Java Beans - 582

Chapter 26 - A Tour of Swing - 601 Chapter 27 - Servlets - 616 Chapter 28 -

Migrating from C++ to Java - 641 Part lV Applying Java

Chapter 29 - The DynamicBillboard Applet - 659 Chapter 30 - ImageMenu: An

Image-Based Web Menu - 683 Chapter 31 - The Lavatron Applet: A Sports

Arena Display - 689 Chapter 32 - Scrabblet: A Multiplayer Word Game - 696

Appendix A - Using Java’s Documentation Comments - 739 Back Cover

Master Java with the most comprehensive all-in-one tutorial/reference

available, now completely updated for the Java 2 specification. Top

programming experts Patrick Naughton and Herbert Schildt show you

everything you need to know to develop, compile, debug and run Java

applications and applets.

Inside you'll find a complete description of the Java language, its class

libraries, and its developmentenvironment. With clear descriptions, hundreds

of practical examples, and expert techniques, this is a book that no Java

programmer should be without. With this book, you'll: • • • • • • • Master

the Java language and its core libraries Create portable Java applets and

applications Fully utilize the Abstract Window Toolkit (AWT) Supercharge

your programs using multiple threads Effectively pply Java's networking

classes Create servlets, draw images, and develop Java Beans Migrate code

from C++ to Java Plus, you'll find details on new Java 2 features, including: •

https://assignbuster.com/complete-reference-java/

 Complete reference java – Paper Example Page 4

• • • The powerful collections framework The Swing component set The Java

threading model The numerous methods, classes, and interfaces found

throughout the API About the Authors Patrick Naughton is currently the

chieftechnologyoffice for Infoseek Corporation. He is the founding member of

the original Sun Microsystems -3- project team that developed Java.

Herbert Schildt is a leading authority on C and C++, an expert on Windows,

and master at Java. He has written numerous best-selling books. Java 2: The

Complete Reference Third Edition Patrick Naughton Herbert Schildt

Osborne/McGraw-Hill 2600 Tenth Street Berkeley, California 94710 U. S. A.

For information on translations or book distributors outside the U. S. A. , or to

arrange bulk purchase discounts for sales promotions, premiums, or fund-

raisers, please contact Osborne/McGraw-Hill at the above address.

Copyright © 1999 by The McGraw-Hill Companies. All rights reserved.

Printed in the United States of America. Except as permitted under the

Copyright Act of 1976, no part of this publication may be reproduced or

distributed in any form or by any means, or stored in a database or retrieval

system, without the prior written permission of the publisher, with the

exception that the program listings may be entered, stored, and executed in

a computer system, but they may not be reproduced for publication.

234567890 AGM AGM 90198765432109 ISBN 0-07-211976-4 Publisher

Brandon A. Nordin Associate Publisher/Editor-in-Chief Scott Rogers

Acquisitions Editor Megg Bonar Project Editor Janet Walden Editorial Assistant

Stephane Thomas Technical Editor Tom Feng -4- Copy Editor William

McManus Proofreader Emily K. Wolman Indexer Sheryl Schildt Computer

https://assignbuster.com/complete-reference-java/

 Complete reference java – Paper Example Page 5

Designer Michelle Galicia Jani Beckwith Ann Sellers Illustrator Brian Wells

Beth Young Information has been obtained by Osborne/McGraw-Hill from

sources believed to be reliable.

However, because of the possibility of human or mechanical error by our

sources, Osborne/McGraw-Hill, or others, Osborne/McGraw-Hill does not

guarantee the accuracy, adequacy, or completeness of any information and

is not responsible for any errors or omissions or the results obtained from

use of such information. About the Authors Patrick Naughton started

consulting as a software engineer in 1982, paying his way through school

and gaining a trial-by-fire perspective on the PC industry as it grew from its

infancy.

After extensive experience with the X Window System from MIT, he joined

Sun Microsystems' window systems group in 1988. In late 1990, Naughton

started a secret project called " Green" in SunLabs. This small project

intended to create a completely new platform for software development that

would solve many of the problems in existing systems. The most significant

technology to come out of the Green project was Java. Naughton was

instrumental in the creation and evolution of Java, from its inception through

to its revolutionary transition into the language of the Internet.

Naughton is currently the executive vice president of products for Infoseek

Corporation, and is the leader of the team that creates the groundbreaking

GO Network™. Prior to working with Infoseek, he was president and chief

technology officer of Paul Allen's Starwave Corporation, where he led the

development of platform strategies, systems software, applications, and

https://assignbuster.com/complete-reference-java/

 Complete reference java – Paper Example Page 6

tools to publish a suite of award-winning online services, including ESPN.

com, ABCNEWS. com, Mr. Showbiz, NBA. com, and NFL. com, among others.

Naughton is the author of The Java Handbook and coauthor of Java 1. : The

Complete Reference, both best-sellers from Osborne/McGraw-Hill. He holds a

B. S. in computersciencefrom Clarkson University. Herbert Schildt is the

world's leading programming author. His books have sold more than two

million copies worldwide and have been translated into all major foreign

languages. Herb is author of the best-sellers C++: The Complete Reference,

C: The Complete Reference, Java Programmer's Reference, Teach Yourself C,

Teach Yourself C++, C++ from the Ground Up, Windows 98 Programming

from the Ground Up, and STL Programming from the Ground Up. He is also a

coauthor of C/C++ Annotated Archives.

Herb is president of Universal Computing Laboratories, a software consulting

firm in Mahomet, Illinois. He holds a master's degree in computer science

from the University of Illinois. Special Thanks -5- Special thanks go to Joe

O'Neil for his help in preparing the third edition of this book. In addition to

handling the updating required by the new Java 2 specification, Joe also

provided the initial drafts for Chapters 24, 25, 26, and 27. As always, his

efforts are appreciated. Acknowledgments Writing my first book, The Java

Handbook, was a spiritual experience—bringing closure to my five years of

effort on the Java project.

It reads more like a narrative tour through Java than a " complete reference.

" Not all of the Java library classes were covered, and not every method in

each class was listed. Culminating with the history chapter, " The Long

https://assignbuster.com/complete-reference-java/

 Complete reference java – Paper Example Page 7

Strange Trip to Java," the book provided an outlet for my personal opinions

about how the language turned out. This book is different. It presents a

balanced, objective, and comprehensive view of Java. The heroics of the

people who made this language happen are largely undocumented. The

press tends to focus too narrowly in order to make for a clean story.

The success of this language is not due to any single person, but to the

combined successes and failings of a group of dedicated and inspirational

individuals—including James Gosling, Arthur van Hoff, Jonathan Payne, Chris

Warth, Tim Lindholm, Frank Yellin, Sami Shaio, Patrick Chan, Kim Polese,

Richard Tuck, Eugene Kuerner, Bill Joy, and many more. Myrespectfor what

that team accomplished grows with each passing day and each Java class I

write. The Internet is a strange place to work. For this book's first edition, I

spent six months working closely with a man I've never met.

Herb Schildt wrote a wonderful book, C++: The Complete Reference, about a

very difficult language. When it became clear that programmers needed a

combination of what I offered in The Java Handbook and Herb's book, the

solution was simple. We teamed up to provide the best of both worlds. Herb

understands how to present difficult concepts in a way that neither insults

the experienced programmer nor leaves the beginner behind. His stamina

for writing down every little detail combined with my understanding of how

those details came about has made for a book we think you will all enjoy.

We've updated this book for Java 2 so that it remains current and continues

to deliver a solid reference in a proven format. Herb has done most of

thehard workon this third edition. My main goal was to include complete

https://assignbuster.com/complete-reference-java/

 Complete reference java – Paper Example Page 8

examples of excellent Java programming. To avoid presenting a single

biased view about how to write Java, I also used some of my friends'

excellent applets and they deserve credit for their work here: • Robert

Temple is a gifted Java programmer who creates amazing applets with

almost no download time.

I saw his code on the net and sent him e-mail to offer him a job, but

coincidentally, he had found the job listing on the web and had already

scheduled aninterviewtrip. His DynamicBillboard applet, which we examine

in Chapter 29, is full of nonobvious performance tricks, which renewed my

faith in Java the first time I saw it. • David LaVallee (a. k. a. Scout) is one of

four people who were writing Java code in 1991. His ImageMenu and

Lavatron applets in Chapters 30 and 31 are classic Scout design. Famous for

his " baubles and trinkets," he always brings a creative design angle to his

applets. David Geller is a longtime Windows programmer and author who has

a keen eye for developer tools. His insight and contributions on development

environments were invaluable. • Johanna Carr remains the smartest

nonprogrammer in the world when it comes to software systems and

languages. She diligently read and commented on every page of this book,

at least twice. If Johanna can't understand it, it is probably poorly written. -6-

Thanks also go to Matthew Naythons, who looks out for my best interests so I

don't have to. And, to Kenna Moser, who continues to support my aspirations

with love, encouragement, and great double lattes.

PATRICK J. NAUGHTON Preface Programming languages, paradigms, and

practices don't stand still very long. It often seems that the methods and

https://assignbuster.com/complete-reference-java/

 Complete reference java – Paper Example Page 9

techniques we applied yesterday are out-of-date today. Of course, this rapid

rate of change is also one of the things that keeps programming exciting.

There is always something new on the horizon. Perhaps no language better

exemplifies the preceding statements than Java. In the space of just a few

years, Java grew from a concept into one of the world's dominant computer

languages. Moreover, during the same short period of time, Java has gone

through two major revisions.

The first occurred when 1. 1 was released. The change in the minor revision

number from 1. 0 to 1. 1 belies the significance of the 1. 1 specification. For

example, Java 1. 1 fundamentally altered the way events were handled,

added such features as Java Beans, and enhanced the API. The second major

revision, Java 2, is the subject of this book. Java 2 keeps all of the

functionality provided by Java 1. 1, but adds a substantial amount of new

and innovative features. For example, it adds the collections framework,

Swing, a new threading model, and numerous API methods and classes.

In fact, so many new features have been added that it is not possible to

discuss them all in this book. In order to keep pace with Java, this book, too,

has gone through rapid revision cycles. The original version of this book

covered Java 1. 0. The second edition covered 1. 1. This, the third edition,

covers Java 2. The time from the first edition to the third is less than two and

one half years! But then, this book is about Java—and Java moves fast! A

Book for All Programmers To use this book does not require any previous

programming experience.

https://assignbuster.com/complete-reference-java/

 Complete reference java – Paper Example Page 10

If, however, you come from a C/C++ background, then you will be able to

advance a bit more rapidly. As most readers will know, Java is similar, in form

and spirit, to C/C++. Thus, knowledge of those languages helps, but is not

necessary. Even if you have never programmed before, you can learn to

program in Java using this book. What's Inside This book covers all aspects of

the Java programming language. Part I presents an indepth tutorial of the

Java language. It begins with the basics, including such things as data types,

control statements, and classes.

Part I also discusses Java's exceptionhandling mechanism, multithreading

subsystem, packages, and interfaces. Part II examines the standard Java

library. As you will learn, much of Java's power is found in its library. Topics

include strings, I/O, networking, the standard utilities, the collections

framework, applets, GUI-based controls, and imaging. Part III looks at some

issues relating to the Java development environment, including an overview

of Java Beans, Swing, and servlets. Part IV presents a number of high-

powered Java applets, which serve as extended examples of the way Java

can be applied.

The final applet, called Scrabblet, is a complete, -7- multiuser networked

game. It shows how to handle some of the toughest issues involved in Web-

based programming. What's New in the Third Edition The major differences

between this and the previous editions of this book involve those features

added by Java 2. These include such things as the collections framework,

Swing, and the changes to the way multithreading is handled. However,

there are also many smaller changes that are sprinkled throughout the Java

https://assignbuster.com/complete-reference-java/

 Complete reference java – Paper Example Page 11

API. Another new item added to the book is the chapter on servlets, which

are small programs that extend a Web server's functionality.

I think that you will find this to be a particularly interesting addition. A Team

Effort I have been writing about programming for many years now. I seldom

work with a coauthor. However, because of the special nature of this book, I

teamed up with Patrick Naughton, one of the creators of Java. Patrick's

insights, expertise, and energy contributed greatly to the success of this

project. Because of Patrick's detailed knowledge of the Java language, its

design, and implementation, there are tips and techniques found in this book

that are difficult (if not impossible) to find elsewhere. HERBERT SCHILDT Part

l: The Java Language

Chapter List Chapter 1: Chapter 2: Chapter 3: Chapter 4: Chapter 5: Chapter

6: Chapter 7: Chapter 8: Chapter 9: The Genesis of Java An Overview of Java

Data Types, Variables, and Arrays Operators Control Statements Introducing

Classes A Closer Look at Methods and Classes Inheritance Packages and

Interfaces -8- Chapter 10: Chapter 11: Chapter 12: Exception Handling

Multithreaded Programming I/O, Applets, and Other Topics Chapter 1: The

Genesis of Java Overview When the chronicle of computer languages is

written, the following will be said: B led to C, C evolved into C++, and C++

set the stage for Java.

To understand Java is to understand the reasons that drove its creation, the

forces that shaped it, and the legacy that it inherits. Like the successful

computer languages that came before, Java is a blend of the best elements

of its rich heritage combined with the innovative concepts required by its

https://assignbuster.com/complete-reference-java/

 Complete reference java – Paper Example Page 12

unique environment. While the remaining chapters of this book describe the

practical aspects of Java—including its syntax, libraries, and applications—in

this chapter, you will learn how and why Java came about, and what makes it

so important.

Although Java has become inseparably linked with the online environment of

the Internet, it is important to remember that Java is first and foremost a

programming language. Computer language innovation and development

occurs for two fundamental reasons: • To adapt to changing environments

and uses • To implement refinements and improvements in the art of

programming As you will see, the creation of Java was driven by both

elements in nearly equal measure. Java's Lineage Java is related to C++,

which is a direct descendent of C. Much of the character of Java is inherited

from these two languages. From C, Java derives its syntax.

Many of Java's object-oriented features were influenced by C++. In fact,

several of Java's defining characteristics come from—or are responses to—its

predecessors. Moreover, the creation of Java was deeply rooted in the

process of refinement and adaptation that has been occurring in computer

programming languages for the past three decades. For these reasons, this

section reviews the sequence of events and forces that led up to Java. As you

will see, each innovation in language design was driven by the need to solve

a fundamental problem that the preceding languages could not solve. Java is

no exception. The Birth of Modern Programming: C

The C language shook the computer world. Its impact should not be

underestimated, because it fundamentally changed the way programming

https://assignbuster.com/complete-reference-java/

 Complete reference java – Paper Example Page 13

was approached and thought about. The creation of C was a direct result of

the need for a structured, efficient, highlevel language that could replace

assembly code when creating systems programs. As you probably know,

when a computer language is designed, trade-offs are often made, such as

the following: • Ease-of-use versus power -9- • Safety versus efficiency •

Rigidity versus extensibility Prior to C, programmers usually had to choose

between languages that optimized one set of traits or the other.

For example, although FORTRAN could be used to write fairly efficient

programs for scientific applications, it was not very good for systems code.

And while BASIC was easy to learn, it wasn't very powerful, and its lack of

structure made its usefulness questionable for large programs. Assembly

language can be used to produce highly efficient programs, but it is not easy

to learn or use effectively. Further, debugging assembly code can be quite

difficult. Another compounding problem was that early computer languages

such as BASIC, COBOL, and FORTRAN were not designed around structured

principles.

Instead, they relied upon the GOTO as a primary means of program control.

As a result, programs written using these languages tended to produce "

spaghetti code"—a mass of tangled jumps and conditional branches that

make a program virtually impossible to understand. While languages like

Pascal are structured, they were not designed for efficiency, and failed to

include certain features necessary to make them applicable to a wide range

of programs. (Specifically, given the standard dialects of Pascal available at

the time, it was not practical to consider using Pascal for systems-level code.

https://assignbuster.com/complete-reference-java/

 Complete reference java – Paper Example Page 14

So, just prior to the invention of C, no one language had reconciled the

conflicting attributes that had dogged earlier efforts. Yet the need for such a

language was pressing. By the early 1970s, the computer revolution was

beginning to take hold, and the demand for software was rapidly outpacing

programmers' ability to produce it. A great deal of effort was being expended

inacademiccircles in an attempt to create a better computer language. But,

and perhaps most importantly, a secondary force was beginning to be felt.

Computer hardware was finally becoming common enough that a critical

mass was being reached.

No longer were computers kept behind locked doors. For the first time,

programmers were gaining virtually unlimited access to their machines. This

allowed the freedom to experiment. It also allowed programmers to begin to

create their own tools. On the eve of C's creation, the stage was set for a

quantum leap forward in computer languages. Invented and first

implemented by Dennis Ritchie on a DEC PDP-11 running the UNIX operating

system, C was the result of a development process that started with an older

language called BCPL, developed by Martin Richards.

BCPL influenced a language called B, invented by Ken Thompson, which led

to the development of C in the 1970s. For many years, the de facto standard

for C was the one supplied with the UNIX operating system and described in

The C Programming Language by Brian Kernighan and Dennis Ritchie

(Prentice-Hall, 1978). C was formally standardized in December 1989, when

the American National Standards Institute (ANSI) standard for C was

adopted. The creation of C is considered by many to have marked the

https://assignbuster.com/complete-reference-java/

 Complete reference java – Paper Example Page 15

beginning of the modern age of computer languages. It successfully

synthesized the conflicting attributes that had so troubled earlier languages.

The result was a powerful, efficient, structured language that was relatively

easy to learn. It also included one other, nearly intangible aspect: it was a

programmer's language. Prior to the invention of C, computer languages

were generally designed either as academic exercises or by bureaucratic

committees. C is different. It was designed, implemented, and developed by

real, working programmers, reflecting the way that they approached the job

of programming. Its features were honed, tested, thought about, and

rethought by the people who actually used the language.

The result was a language that programmers liked to use. Indeed, C quickly

attracted many followers who had a near-religious zeal for it. As such, it

found wide and rapid acceptance in the programmer community. In short, C

is a language designed by and for programmers. As you will see, Java has

inherited this legacy. The Need for C++ - 10 - During the late 1970s and

early 1980s, C became the dominant computer programming language, and

it is still widely used today. Since C is a successful and useful language, you

might ask why a need for something else existed.

The answer is complexity. Throughout the history of programming, the

increasing complexity of programs has driven the need for better ways to

manage that complexity. C++ is a response to that need. To better

understand why managing program complexity is fundamental to the

creation of C++, consider the following. Approaches to programming have

changed dramatically since the invention of the computer. For example,

https://assignbuster.com/complete-reference-java/

 Complete reference java – Paper Example Page 16

when computers were first invented, programming was done by manually

toggling in the binary machine instructions by use of the front panel.

As long as programs were just a few hundred instructions long, this approach

worked. As programs grew, assembly language was invented so that a

programmer could deal with larger, increasingly complex programs by using

symbolic representations of the machine instructions. As programs continued

to grow, high-level languages were introduced that gave the programmer

more tools with which to handle complexity. The first widespread language

was, of course, FORTRAN. While FORTRAN was an impressive first step, it is

hardly a language that encourages clear and easy-tounderstand programs.

The 1960s gave birth to structured programming. This is the method of

programming championed by languages such as C. The use of structured

languages enabled programmers to write, for the first time, moderately

complex programs fairly easily. However, even with structured programming

methods, once a project reaches a certain size, its complexity exceeds what

a programmer can manage. By the early 1980s, many projects were pushing

the structured approach past its limits. To solve this problem, a new way to

program was invented, called object-oriented programming (OOP).

Object-oriented programming is discussed in detail later in this book, but

here is a brief definition: OOP is a programming methodology that helps

organize complex programs through the use of inheritance, encapsulation,

and polymorphism. In the final analysis, although C is one of the world's

great programming languages, there is a limit to its ability to handle

complexity. Once a program exceeds somewhere between 25, 000 and 100,

https://assignbuster.com/complete-reference-java/

 Complete reference java – Paper Example Page 17

000 lines of code, it becomes so complex that it is difficult to grasp as a

totality. C++ allows this barrier to be broken, and helps the programmer

comprehend and manage larger programs.

C++ was invented by Bjarne Stroustrup in 1979, while he was working at

Bell Laboratories in Murray Hill, New Jersey. Stroustrup initially called the

new language " C with Classes. " However, in 1983, the name was changed

to C++. C++ extends C by adding object-oriented features. Because C++ is

built upon the foundation of C, it includes all of C's features, attributes, and

benefits. This is a crucial reason for the success of C++ as a language. The

invention of C++ was not an attempt to create a completely new

programming language. Instead, it was an enhancement to an already highly

successful one.

C++ was standardized in November 1997, and an ANSI/ISO standard for C+

+ is now available. The Stage Is Set for Java By the end of the 1980s and the

early 1990s, object-oriented programming using C++ took hold. Indeed, for

a brief moment it seemed as if programmers had finally found the perfect

language. Because C++ blended the high efficiency and stylistic elements of

C with the object-oriented paradigm, it was a language that could be used to

create a wide range of programs. However, just as in the past, forces were

brewing that would, once again, drive computer language evolution forward.

Within a few years, the World

Wide Web and the Internet would reach critical mass. This event would

precipitate another revolution in programming. The Creation of Java - 11 -

Java was conceived by James Gosling, Patrick Naughton, Chris Warth, Ed

https://assignbuster.com/complete-reference-java/

 Complete reference java – Paper Example Page 18

Frank, and Mike Sheridan at Sun Microsystems, Inc. in 1991. It took 18

months to develop the first working version. This language was initially

called " Oak" but was renamed " Java" in 1995. Between the initial

implementation of Oak in the fall of 1992 and the public announcement of

Java in the spring of 1995, many more people contributed to the design and

evolution of the language.

Bill Joy, Arthur van Hoff, Jonathan Payne, Frank Yellin, and Tim Lindholm were

key contributors to the maturing of the original prototype. Somewhat

surprisingly, the original impetus for Java was not the Internet! Instead, the

primarymotivationwas the need for a platform-independent (that is,

architecture- neutral) language that could be used to create software to be

embedded in various consumer electronic devices, such as microwave ovens

and remote controls. As you can probably guess, many different types of

CPUs are used as controllers.

The trouble with C and C++ (and most other languages) is that they are

designed to be compiled for a specific target. Although it is possible to

compile a C++ program for just about any type of CPU, to do so requires a

full C++ compiler targeted for that CPU. The problem is that compilers are

expensive and time-consuming to create. An easier—and more cost-efficient

—solution was needed. In an attempt to find such a solution, Gosling and

others began work on a portable, platform-independent language that could

be used to produce code that would run on a variety of CPUs under differing

environments.

https://assignbuster.com/complete-reference-java/

 Complete reference java – Paper Example Page 19

This effort ultimately led to the creation of Java. About the time that the

details of Java were being worked out, a second, and ultimately more

important, factor was emerging that would play a crucial role in the future of

Java. This second force was, of course, the World Wide Web. Had the Web

not taken shape at about the same time that Java was being implemented,

Java might have remained a useful but obscure language for programming

consumer electronics.

However, with the emergence of the World Wide Web, Java was propelled to

the forefront of computer language design, because the Web, too, demanded

portable programs. Most programmers learn early in their careers that

portable programs are as elusive as they are desirable. While the quest for a

way to create efficient, portable (platformindependent) programs is nearly as

old as the discipline of programming itself, it had taken a back seat to other,

more pressing problems.

Further, because much of the computer world had divided itself into the

three competing camps of Intel, Macintosh, and UNIX, most programmers

stayed within their fortified boundaries, and the urgent need for portable

code was reduced. However, with the advent of the Internet and the Web,

the old problem of portability returned with a vengeance. After all, the

Internet consists of a diverse, distributed universe populated with many

types of computers, operating systems, and CPUs. Even though many types

of platforms are attached to the Internet, users would like them all to be able

to run the same program.

https://assignbuster.com/complete-reference-java/

 Complete reference java – Paper Example Page 20

What was once an irritating but low-priority problem had become a high-

profile necessity. By 1993, it became obvious to members of the Java design

team that the problems of portability frequently encountered when creating

code for embedded controllers are also found when attempting to create

code for the Internet. In fact, the same problem that Java was initially

designed to solve on a small scale could also be applied to the Internet on a

large scale. This realization caused the focus of Java to switch from

consumer electronics to Internet programming.

So, while the desire for an architecture-neutral programming language

provided the initial spark, the Internet ultimately led to Java's large-scale

success. As mentioned earlier, Java derives much of its character from C and

C++. This is by intent. The Java designers knew that using the familiar

syntax of C and echoing the object-oriented features of C++ would make

their language appealing to the legions of experienced C/C++ programmers.

In addition to the surface similarities, Java shares some of the other

attributes that helped make C and C++ successful.

First, Java was designed, tested, and refined by real, working programmers.

It is a language grounded in the needs and experiences of the people who

devised it. Thus, Java is also a programmer's language. Second, Java is

cohesive and logically consistent. Third, except for those constraints

imposed by the Internet environment, Java gives you, the - 12 - programmer,

full control. If you program well, your programs reflect it. If you program

poorly, your programs reflect that, too. Put differently, Java is not a language

with training wheels. It is a language for professional programmers.

https://assignbuster.com/complete-reference-java/

 Complete reference java – Paper Example Page 21

Because of the similarities between Java and C++, it is tempting to think of

Java as simply the " Internet version of C++. " However, to do so would be a

large mistake. Java has significant practical and philosophical differences.

While it is true that Java was influenced by C++, it is not an enhanced

version of C++. For example, Java is neither upwardly nor downwardly

compatible with C++. Of course, the similarities with C++ are significant,

and if you are a C++ programmer, then you will feel right at home with Java.

One other point: Java was not designed to replace C++.

Java was designed to solve a certain set of problems. C++ was designed to

solve a different set of problems. Both will coexist for many years to come.

As mentioned at the start of this chapter, computer languages evolve for two

reasons: to adapt to changes in environment and to implement advances in

the art of programming. The environmental change that prompted Java was

the need for platform-independent programs destined for distribution on the

Internet. However, Java also embodies changes in the way that people

approach the writing of programs.

Specifically, Java enhances and refines the object-oriented paradigm used by

C++. Thus, Java is not a language that exists in isolation. Rather, it is the

current instance of an ongoing process begun many years ago. This fact

alone is enough to ensure Java a place in computer language history. Java is

to Internet programming what C was to systems programming: a

revolutionary force that will change the world. Why Java Is Important to the

Internet The Internet helped catapult Java to the forefront of programming,

and Java, in turn, has had a profound effect on the Internet.

https://assignbuster.com/complete-reference-java/

 Complete reference java – Paper Example Page 22

The reason for this is quite simple: Java expands the universe of objects that

can move about freely in cyberspace. In a network, two very broad

categories of objects are transmitted between the server and your personal

computer: passive information and dynamic, active programs. For example,

when you read your e-mail, you are viewing passive data. Even when you

download a program, the program's code is still only passive data until you

execute it. However, a second type of object can be transmitted to your

computer: a dynamic, self-executing program.

Such a program is an active agent on the client computer, yet is initiated by

the server. For example, a program might be provided by the server to

display properly the data that the server is sending. As desirable as dynamic,

networked programs are, they also present serious problems in the areas of

security and portability. Prior to Java, cyberspace was effectively closed to

half the entities that now live there. As you will see, Java addresses those

concerns and, by doing so, has opened the door to an exciting new form of

program: the applet. Java Applets and Applications

Java can be used to create two types of programs: applications and applets.

An application is a program that runs on your computer, under the operating

system of that computer. That is, an application created by Java is more or

less like one created using C or C++. When used to create applications, Java

is not much different from any other computer language. Rather, it is Java's

ability to create applets that makes it important. An applet is an application

designed to be transmitted over the Internet and executed by a Java-

compatible Web browser.

https://assignbuster.com/complete-reference-java/

 Complete reference java – Paper Example Page 23

An applet is actually a tiny Java program, dynamically downloaded across the

network, just like an image, sound file, or video clip. The important

difference is that an applet is an intelligent program, not just an animation or

media file. In other words, an applet is a program that can react to user input

and dynamically change—not just run the same animation or sound over and

over. As exciting as applets are, they would be nothing more than wishful

thinking if Java were not able to address the two fundamental problems

associated with them: security and portability.

Before continuing, let's define what these two terms mean relative to the -

13 - Internet. Security As you are likely aware, every time that you download

a " normal" program, you are risking a viral infection. Prior to Java, most

users did not download executable programs frequently, and those who did

scanned them for viruses prior to execution. Even so, most users still worried

about the possibility of infecting their systems with a virus. In addition to

viruses, another type of malicious program exists that must be guarded

against.

This type of program can gather private information, such as credit card

numbers, bank account balances, and passwords, by searching the contents

of your computer's local file system. Java answers both of these concerns by

providing a " firewall" between a networked application and your computer.

When you use a Java-compatible Web browser, you can safely download Java

applets without fear of viral infection or malicious intent. Java achieves this

protection by confining a Java program to the Java execution environment

and not allowing it access to other parts of the computer. You will see how

https://assignbuster.com/complete-reference-java/

 Complete reference java – Paper Example Page 24

this is accomplished shortly.) The ability to download applets with

confidence that no harm will be done and that no security will be breached is

considered by many to be the single most important aspect of Java.

Portability As discussed earlier, many types of computers and operating

systems are in use throughout the world—and many are connected to the

Internet. For programs to be dynamically downloaded to all the various types

of platforms connected to the Internet, some means of generating portable

executable code is needed.

As you will soon see, the same mechanism that helps ensure security also

helps create portability. Indeed, Java's solution to these two problems is both

elegant and efficient. Java's Magic: The Bytecode The key that allows Java to

solve both the security and the portability problems just described is that the

output of a Java compiler is not executable code. Rather, it is bytecode.

Bytecode is a highly optimized set of instructions designed to be executed by

the Java run-time system, which is called the Java Virtual Machine (JVM). That

is, in its standard form, the

JVM is an interpreter for bytecode. This may come as a bit of a surprise. As

you know, C++ is compiled to executable code. In fact, most modern

languages are designed to be compiled, not interpreted—mostly because of

performance concerns. However, the fact that a Java program is executed by

the JVM helps solve the major problems associated with downloading

programs over the Internet. Here is why. Translating a Java program into

bytecode helps makes it much easier to run a program in a wide variety of

https://assignbuster.com/complete-reference-java/

 Complete reference java – Paper Example Page 25

environments. The reason is straightforward: only the JVM needs to be

implemented for each platform.

Once the run-time package exists for a given system, any Java program can

run on it. Remember, although the details of the JVM will differ from platform

to platform, all interpret the same Java bytecode. If a Java program were

compiled to native code, then different versions of the same program would

have to exist for each type of CPU connected to the Internet. This is, of

course, not a feasible solution. Thus, the interpretation of bytecode is the

easiest way to create truly portable programs. The fact that a Java program

is interpreted also helps to make it secure.

Because the execution of every Java program is under the control of the JVM,

the JVM can contain the program and prevent it from generating side effects

outside of the system. As you will see, safety is also enhanced by certain

restrictions that exist in the Java language. When a program is interpreted, it

generally runs substantially slower than it would run if compiled to

executable code. However, with Java, the differential between the two is not

so great. The use of bytecode enables the Java run-time system to execute

programs much faster than you might expect. - 14 -

Although Java was designed for interpretation, there is technically nothing

about Java that prevents on-the-fly compilation of bytecode into native code.

Along these lines, Sun has just completed its Just In Time (JIT) compiler for

bytecode, which is included in the Java 2 release. When the JIT compiler is

part of the JVM, it compiles bytecode into executable code in real time, on a

piece-by-piece, demand basis. It is important to understand that it is not

https://assignbuster.com/complete-reference-java/

 Complete reference java – Paper Example Page 26

possible to compile an entire Java program into executable code all at once,

because Java performs various run-time checks that can be one only at run

time. Instead, the JIT compiles code as it is needed, during execution.

However, the just-in-time approach still yields a significant performance

boost. Even when dynamic compilation is applied to bytecode, the portability

and safety features still apply, because the run-time system (which performs

the compilation) still is in charge of the execution environment. Whether

your Java program is actually interpreted in the traditional way or compiled

on-the-fly, its functionality is the same. The Java Buzzwords No discussion of

the genesis of Java is complete without a look at the Java buzzwords.

Although the fundamental forces that necessitated the invention of Java are

portability and security, other factors also played an important role in

molding the final form of the language. The key considerations were

summed up by the Java team in the following list of buzzwords: • Simple •

Secure • Portable • Object-oriented • Robust • Multithreaded • Architecture-

neutral • Interpreted • High performance • Distributed • Dynamic Two of

these buzzwords have already been discussed: secure and portable. Let's

examine what each of the others implies. Simple

Java was designed to be easy for the professional programmer to learn and

use effectively. Assuming that you have some programming experience, you

will not find Java hard to master. If you already understand the basic

concepts of object-oriented programming, learning Java will be even easier.

Best of all, if you are an experienced C++ programmer, moving to Java will

require very little effort. Because Java inherits the C/C++ syntax and many

https://assignbuster.com/complete-reference-java/

 Complete reference java – Paper Example Page 27

of the object-oriented features of C++, most programmers have little trouble

learning Java. Also, some of the more confusing concepts from C++ are 15 -

either left out of Java or implemented in a cleaner, more approachable

manner. Beyond its similarities with C/C++, Java has another attribute that

makes it easy to learn: it makes an effort not to have surprising features. In

Java, there are a small number of clearly defined ways to accomplish a given

task. Object-Oriented Although influenced by its predecessors, Java was not

designed to be source-code compatible with any other language. This

allowed the Java team the freedom to design with a blank slate. One

outcome of this was a clean, usable, pragmatic approach to objects.

Borrowing liberally from many seminal object-software environments of the

last few decades, Java manages to strike a balance between the purist's "

everything is an object" paradigm and the pragmatist's " stay out of my way"

model. The object model in Java is simple and easy to extend, while simple

types, such as integers, are kept as highperformance nonobjects. Robust The

multiplatformed environment of the Web places extraordinary demands on a

program, because the program must execute reliably in a variety of systems.

Thus, the ability to create robust programs was given a high priority in the

design of Java.

To gain reliability, Java restricts you in a few key areas, to force you to find

your mistakes early in program development. At the same time, Java frees

you from having to worry about many of the most common causes of

programming errors. Because Java is a strictly typed language, it checks

your code at compile time. However, it also checks your code at run time. In

https://assignbuster.com/complete-reference-java/

 Complete reference java – Paper Example Page 28

fact, many hard-to-track-down bugs that often turn up in hard-to-reproduce

run-time situations are simply impossible to create in Java. Knowing that

what you have written will behave in a predictable way under diverse

conditions is a key feature of Java.

To better understand how Java is robust, consider two of the main reasons

for programfailure: memory management mistakes and mishandled

exceptional conditions (that is, run-time errors). Memory management can

be a difficult, tedious task in traditional programming environments. For

example, in C/C++, the programmer must manually allocate and free all

dynamic memory. This sometimes leads to problems, because programmers

will either forget to free memory that has been previously allocated or,

worse, try to free some memory that another part of their code is still using.

Java virtually eliminates these problems by managing memory allocation and

deallocation for you. (In fact, deallocation is completely automatic, because

Java provides garbage collection for unused objects.) Exceptional conditions

in traditional environments often arise in situations such as division by zero

or " file not found," and they must be managed with clumsy and hard-to-read

constructs. Java helps in this area by providing object-oriented exception

handling. In a well-written Java program, all run-time errors can—and should

— be managed by your program. Multithreaded

Java was designed to meet the real-world requirement of creating

interactive, networked programs. To accomplish this, Java supports

multithreaded programming, which allows you to write programs that do

many things simultaneously. The Java run-time system comes with an

https://assignbuster.com/complete-reference-java/

 Complete reference java – Paper Example Page 29

elegant yet sophisticated solution for multiprocess synchronization that

enables you to construct smoothly running interactive systems. Java's easy-

to-use approach to multithreading allows you to think about the specific

behavior of your program, not the multitasking subsystem. Architecture-

Neutral

A central issue for the Java designers was that of code longevity and

portability. One of the main problems facing programmers is that no

guarantee exists that if you write a - 16 - program today, it will run tomorrow

—even on the same machine. Operating system upgrades, processor

upgrades, and changes in core system resources can all combine to make a

program malfunction. The Java designers made several hard decisions in the

Java language and the Java Virtual Machine in an attempt to alter this

situation. Their goal was " write once; run anywhere, any time, forever. To a

great extent, this goal was accomplished. Interpreted and High Performance

As described earlier, Java enables the creation of cross-platform programs by

compiling into an intermediate representation called Java bytecode. This

code can be interpreted on any system that provides a Java Virtual Machine.

Most previous attempts at crossplatform solutions have done so at the

expense of performance. Other interpreted systems, such as BASIC, Tcl, and

PERL, suffer from almost insurmountable performance deficits. Java,

however, was designed to perform well on very low-power CPUs.

As explained earlier, while it is true that Java was engineered for

interpretation, the Java bytecode was carefully designed so that it would be

easy to translate directly into native machine code for very high

https://assignbuster.com/complete-reference-java/

 Complete reference java – Paper Example Page 30

performance by using a just-in-time compiler. Java run-time systems that

provide this feature lose none of the benefits of the platform-independent

code. " High-performance cross-platform" is no longer an oxymoron.

Distributed Java is designed for the distributed environment of the Internet,

because it handles TCP/IP protocols.

In fact, accessing a resource using a URL is not much different from

accessing a file. The original version of Java (Oak) included features for intra-

addressspace messaging. This allowed objects on two different computers to

execute procedures remotely. Java has recently revived these interfaces in a

package called Remote Method Invocation (RMI). This feature brings an

unparalleled level of abstraction to client/server programming. Dynamic Java

programs carry with them substantial amounts of run-time type information

that is used to verify and resolve accesses to objects at run time.

This makes it possible to dynamically link code in a safe and expedient

manner. This is crucial to the robustness of the applet environment, in which

small fragments of bytecode may be dynamically updated on a running

system. The Continuing Revolution The initial release of Java was nothing

short of revolutionary, but it did not mark the end of Java's era of rapid

innovation. Unlike most other software systems that usually settle into a

pattern of small, incremental improvements, Java continued to evolve at an

explosive pace. Soon after the release of Java 1. , the designers of Java had

already created Java 1. 1. The features added by Java 1. 1 were more

significant and substantial than the increase in the minor revision number

would have you think. Java 1. 1 added many new library elements, redefined

https://assignbuster.com/complete-reference-java/

 Complete reference java – Paper Example Page 31

the way events are handled by applets, and reconfigured many features of

the 1. 0 library. It also deprecated (rendered obsolete) several features

originally defined by Java 1. 0. Thus, Java 1. 1 both added and subtracted

attributes from its original specification. Continuing in this evolution, Java 2

also adds and subtracts features.

While all languages change over time, changes to Java take on an extra

importance, because older browsers will not be able to execute code that

uses a new feature. For this reason, it is good to have a general

understanding of when various changes have taken place. With this in mind,

the next section takes a brief look at the evolution of Java since its original 1.

0 specification. - 17 - Features Added by 1. 1 Version 1. 1 added some

important elements to Java. Most of the additions occurred in the Java

library. However, a few new language features were also included. Here is a

list of the most important features added by 1. : • Java Beans, which are

software components that are written in Java. • Serialization, which allows

you to save and restore the state of an object. • Remote Method Invocation

(RMI), which allows a Java object to invoke the methods of another Java

object that is located on a different machine. This is an important facility for

building distributed applications. • Java Database Connectivity (JDBC), which

allows programs to access SQL databases from many different vendors. •

The Java Native Interface (JNI), which provides a new way for your programs

to interface with code libraries written in other languages. Reflection, which

is the process of determining the fields, constructors, and methods of a Java

object at run time. • Various security features, such as digital signatures,

message digests, access control lists, and key generation. • Built-in support

https://assignbuster.com/complete-reference-java/

 Complete reference java – Paper Example Page 32

for 16-bit character streams that handle Unicode characters. • Significant

changes to event handling that improve the way in which events generated

by graphical user interface (GUI) components are handled. • Inner classes,

which allow one class to be defined within another. Features Deprecated by

1. 1 As just mentioned, Java 1. 1 deprecated many earlier library elements.

For example, most of the original Date class was deprecated. However, the

deprecated features did not go away. Instead, they were replaced with

updated alternatives. In general, deprecated 1. 0 features are still available

in Java to support legacy code, but they should not be used by new

applications. This book still describes a few of the more important

deprecated 1. 0 library elements, for the sake of programmers older code.

Features Added by 2 Building upon 1. 1, Java 2 adds many important new

features. Here is a partial list: • Swing is a set of user interface components

that is implemented entirely in Java.

You can use a look and feel that is either specific to a particular operating

system or uniform across operating systems. You can also design your own

look and feel. • Collections are groups of objects. Java 2 provides several

types of collections, such as linked lists, dynamic arrays, and hash

tablefsections, for your use. Collections offer a new way to solve several

common programming problems. • More flexible security mechanisms are

now available for Java programs. Policy files can define the permissions for

code from various sources. These determine, for example, whether a

particular file or directory may be accessed, or whether a 18 - connection

can be established to a specific host and port. • Digital certificates provide a

https://assignbuster.com/complete-reference-java/

 Complete reference java – Paper Example Page 33

mechanism to establish the identity of a user. You may think of them as

electronic passports. Java programs can parse and use certificates to enforce

security policies. • Various security tools are available that enable you to

create and store cryptographic keys and digital certificates, sign Java Archive

(JAR) files, and check the signature of a JAR file. • The Accessibility library

provides features that make it easier for people with sight impairments or

other disabilities to work with computers.

Of course, these capabilities can be useful for any user. • The Java 2D library

provides advanced features for working with shapes, images, and text. •

Drag-and-drop capabilities allow you to transfer data within or between

applications. • Text components can now receive Japanese, Chinese, and

Korean characters from the keyboard. This is done by using a sequence of

keystrokes to represent one character. • You can now play back WAV, AIFF,

AU, MIDI, and RMF audio files. • The Common Object Request Broker

Architecture (CORBA) defines an Object Request Broker (ORB) and an

Interface Definition Language (IDL).

Java 2 includes an ORB and an idltojava compiler. The latter generates code

from an IDL specification. • Performance improvements have been made in

several areas. A Just-In-Time (JIT) compiler is included in the JDK. • Many

browsers include a Java Virtual Machine that is used to execute applets.

Unfortunately, browser JVMs typically do not include the latest Java features.

The Java Plug-In solves this problem. It directs a browser to use a Java

Runtime Environment (JRE) rather than the browser's JVM. The JRE is a

subset of the JDK. It does not include the tools and classes that are used in a

https://assignbuster.com/complete-reference-java/

 Complete reference java – Paper Example Page 34

development environment. Various tools such as javac, java, and javadoc

have been enhanced. Debugger and profiler interfaces for the JVM are

available. Features Deprecated by 2 Although not as extensive as the

deprecations experienced between 1. 0 and 1. 1, some features of Java 1. 1

are deprecated by Java 2. For example, the suspend(), resume(), and stop()

methods of the Thread class should not be used in new code. Throughout

this book, deprecated features are pointed out and their Java 2 alternatives

are described. This will be helpful to any programmer charged with updating

Java 1. 1 code. Java Is Not an Enhanced HTML

Before moving on, it is necessary to dispel a common misunderstanding.

Because Java is used in the creation of Web pages, newcomers sometimes

confuse Java with Hypertext Markup Language (HTML) or think that Java is

simply some enhancement to HTML. Fortunately, these are misconceptions.

HTML is, in essence, a means of defining the logical organization of

information and providing links, called hypertext links, to related information.

As you probably know, a hypertext link (also called a hyperlink) is a link to

another hypertext document, which may exist either locally or elsewhere on

the Web.

The defining element of a hypertext document is that it can be read in a

nonlinear - 19 - fashion, with the user pursuing various paths by choosing

hypertext links to other, related documents. Although HTML allows a user to

read documents in a dynamic manner, HTML is not, and never has been, a

programming language. While it is certainly true that, to the extent that

HTML helped propel the popularity of the Web, HTML was a catalyst for the

https://assignbuster.com/complete-reference-java/

 Complete reference java – Paper Example Page 35

creation of Java, it did not directly influence the design of the language or

the concepts behind it.

The only connection that HTML has to Java is that it provides the applet tag,

which executes a Java applet. Thus, it is possible to embed instructions in a

hypertext document that cause a Java applet to execute. Chapter 2: An

Overview of Java Overview Like all other computer languages, the elements

of Java do not exist in isolation. Rather, they work together to form the

language as a whole. However, this interrelatedness can make it difficult to

describe one aspect of Java without involving several others. Often a

discussion of one feature implies prior knowledge of another.

For this reason, this chapter presents a quick overview of several key

features of Java. The material described here will give you a foothold that will

allow you to write and understand simple programs. Most of the topics

discussed will be examined in greater detail in the remaining chapters of Part

1. Object-Oriented Programming Object-oriented programming is at the core

of Java. In fact, all Java programs are objectoriented—this isn't an option the

way that it is in C++, for example. OOP is so integral to Java that you must

understand its basic principles before you can write even simple Java

programs.

Therefore, this chapter begins with a discussion of the theoretical aspects of

OOP. Two Paradigms As you know, all computer programs consist of two

elements: code and data. Furthermore, a program can be conceptually

organized around its code or around its data. That is, some programs are

written around " what is happening" and others are written around " who is

https://assignbuster.com/complete-reference-java/

 Complete reference java – Paper Example Page 36

being affected. " These are the two paradigms that govern how a program is

constructed. The first way is called the process-oriented model. This

approach characterizes a program as a series of linear steps (that is, code).

The process-oriented model can be thought of as code acting on data.

Procedural languages such as C employ this model to considerable success.

However, as mentioned in Chapter 1, problems with this approach appear as

programs grow larger and more complex. To manage increasing complexity,

the second approach, called object-oriented programming, was conceived.

Object-oriented programming organizes a program around its data (that is,

objects) and a set of well-defined interfaces to that data. An objectoriented

program can be characterized as data controlling access to code.

As you will see, by switching the controlling entity to data, you can achieve

several organizational benefits. Abstraction An essential element of object-

oriented programming is abstraction. Humans manage complexity through

abstraction. For example, people do not think of a car as a set of tens of

thousands of individual parts. They think of it as a well-defined object with its

own unique behavior. This abstraction allows people to use a car to drive to

the grocery store without being overwhelmed by the complexity of the parts

that form the car.

They can ignore the details of how the engine, transmission, and braking

systems work. Instead - 20 - they are free to utilize the object as a whole. A

powerful way to manage abstraction is through the use of hierarchical

classifications. This allows you to layer the semantics of complex systems,

breaking them into more manageable pieces. From the outside, the car is a

https://assignbuster.com/complete-reference-java/

 Complete reference java – Paper Example Page 37

single object. Once inside, you see that the car consists of several

subsystems: steering, brakes, sound system, seat belts, heating, cellular

phone, and so on. In turn, each of these subsystems is made up of more

specialized units.

For instance, the sound system consists of a radio, a CD player, and/or a

tape player. The point is that you manage the complexity of the car (or any

other complex system) through the use of hierarchical abstractions.

Hierarchical abstractions of complex systems can also be applied to

computer programs. The data from a traditional process-oriented program

can be transformed by abstraction into its component objects. A sequence of

process steps can become a collection of messages between these objects.

Thus, each of these objects describes its own unique behavior.

You can treat these objects as concrete entities that respond to messages

telling them to do something. This is the essence of object-oriented

programming. Object-oriented concepts form the heart of Java just as they

form the basis for human understanding. It is important that you understand

how these concepts translate into programs. As you will see, object-oriented

programming is a powerful and natural paradigm for creating programs that

survive the inevitable changes accompanying the life cycle of any major

software project, including conception, growth, and aging.

For example, once you have well-defined objects and clean, reliable

interfaces to those objects, you can gracefully decommission or replace parts

of an older system without fear. The Three OOP Principles All object-oriented

programming languages provide mechanisms that help you implement the

https://assignbuster.com/complete-reference-java/

 Complete reference java – Paper Example Page 38

object-oriented model. They are encapsulation, inheritance, and

polymorphism. Let's take a look at these concepts now. Encapsulation

Encapsulation is the mechanism that binds together code and the data it

manipulates, and keeps both safe from outside interference and misuse.

One way to think about encapsulation is as a protective wrapper that

prevents the code and data from being arbitrarily accessed by other code

defined outside the wrapper. Access to the code and data inside the wrapper

is tightly controlled through a well-defined interface. To relate this to the real

world, consider the automatic transmission on an automobile. It

encapsulates hundreds of bits of information about your engine, such as how

much you are accelerating, the pitch of the surface you are on, and the

position of the shift lever.

You, as the user, have only one method of affecting this complex

encapsulation: by moving the gear-shift lever. You can't affect the

transmission by using the turn signal or windshield wipers, for example.

Thus, the gear-shift lever is a well-defined (indeed, unique) interface to the

transmission. Further, what occurs inside the transmission does not affect

objects outside the transmission. For example, shifting gears does not turn

on the headlights! Because an automatic transmission is encapsulated,

dozens of car manufacturers can implement one in any way they please.

However, from the driver's point of view, they all work the same. This same

idea can be applied to programming. The power of encapsulated code is that

everyone knows how to access it and thus can use it regardless of the

implementation details—and without fear of unexpected side effects. In Java

https://assignbuster.com/complete-reference-java/

 Complete reference java – Paper Example Page 39

the basis of encapsulation is the class. Although the class will be examined in

great detail later in this book, the following brief discussion will be helpful

now. A class defines the structure and behavior (data and code) that will be

shared by a set of objects.

Each object of a given class contains the structure and behavior defined by

the class, as if it were stamped out by a mold in the shape of the class. For

this reason, objects are sometimes referred to as instances of a class. Thus,

a class is a logical construct; an object has physical reality. - 21 - When you

create a class, you will specify the code and data that constitute that class.

Collectively, these elements are called members of the class. Specifically,

the data defined by the class are referred to as member variables or

instance variables.

The code that operates on that data is referred to as member methods or

just methods. (If you are familiar with C/C++, it may help to know that what

a Java programmer calls a method, a C/C++ programmer calls a function.)

In properly written Java programs, the methods define how the member

variables can be used. This means that the behavior and interface of a class

are defined by the methods that operate on its instance data. Since the

purpose of a class is to encapsulate complexity, there are mechanisms for

hiding the complexity of the implementation inside the class.

Each method or variable in a class may be marked private or public. The

public interface of a class represents everything that external users of the

class need to know, or may know. The private methods and data can only be

accessed by code that is a member of the class. Therefore, any other code

https://assignbuster.com/complete-reference-java/

 Complete reference java – Paper Example Page 40

that is not a member of the class cannot access a private method or

variable. Since the private members of a class may only be accessed by

other parts of your program through the class' pu

https://assignbuster.com/complete-reference-java/

	Complete reference java

