Water resource plan analysis

ASSIGN BUSTER

Water Resource Plan: Declining Fish Stock According to National Geographic News only 10% of the big fish in the ocean are left (2003). Many fishermen disagree with this figure and say their fishing hauls have not been affected. Environmentalists say that if something is not done to halt the mass fishing industry many species will become extinct. Fishermen say that if their industry is halted in any way it will affect jobs and the communities that depend on the fishing industry.

One way to help quell this growing problem faced by both sides is to develop a sustainability plan that both sides can benefit. In the VLR provided by Axia College of University of Phoenix it is also discussed that only 10\% of the oceans big fish, such as tuna and sword fish remain (2007). This described by one environmentalist is due to mass overfishing of the fish in the ocean. The fish simply cannot reproduce as fast as the fishing industry is pulling them out of the water.

The fisherman in the VLR agrees that the fish supplies could be running low but does not know how to fix the problem without one side facing a huge loss. One solution could be for both sides to come up with a sustainability plan that would benefit both the fishing industry and the fish. One such plan could be like the one shown in the table below. Action Items (In Correct Order)Action StepsTimeline Identify major fishing areas and areas of fish spawning in the ocean. Ask major fishing operations to supply fishing areas and routes. Ask environmentalists to provide areas of fish spawning and spawn cycles.

3-5 months Discuss impact on fishing industry and community of limited fishing. Set up meetings between fishing industry representatives, environmentalists. 1 month Discuss impact on environment of overfishing. Set up meetings between fishing industry and environmentalists. month Develop a balance strategy between fishing and renewing fish supplies. Set up talks and brainstorming ideas to present to each sides on how to balance the industry and the fish levels.

2-4 months Agreeing on a plan. Both sides agree to the balanced plan and follow through with a written contract. 1 month Reviewing the planAfter one year of the plan reports from the fishing industry and fish levels given. Each side makes adjustments to the plan in order for it to be a success. 2 years in order for this plan to work both sides must agree to be open and adjust to each other's ideas. One such idea would be to allow fishing industries to only fish certain areas for a period of two years.

This could allow fish in other areas to reproduce quickly enough. For example the yellow tuna is considered fully mature after two years from the release of an egg (Itano, 2000). This fish after two years will weigh approximately 50 pounds. This type of cycling of fishing areas will allow fish to continue to reproduce while allowing fishing to continue in areas that have already been renewed.

If all works well fish levels should increase and the fishing industry should take only minimal hits. The fishing industry can still say that this type of plan is limiting their fishing abilities. Allowing them to only fish in certain waters at specific bi yearly intervals could inhibit their business by reducing their
per capita catch. Environmentalists could also see this as only slowing the extinction of certain fish species by still now allowing enough time for the ocean to fully recuperate from the fishing industry. In a positive note with cycling areas some fish might increase in price simply due to the laws of supply and demand. With limited catches and demand remaining steady prices will eventually go up.

Environmentalists may also hail this plan as finally stifling the mass overfishing of the oceans big fish. Some problems not defined in this plan that should still be looked at is how and what the fisherman use to catch their bounty with. Some fishing styles should be carefully looked at how it affects other ocean habitats, such as fishing nets dragging on the oceans bottoms. This type of fishing can disturb natural habitats that eventually help sustain the big fish.

Destroying a reef that tuna eggs are hatched in will only delay the regeneration of tuna in that area. Careful consideration should be given by both sides on what methods should be used to help renew the big fish supply in our oceans. One last section of the plan that should also be discussed is how reduced and cycle fishing can affect the communities that the fishing industry supports. Careful thought should be placed on if a town's economical resources will be hurt by this plan.

If so environmentalists should help the towns find other ways of generating revenue. During cycle periods jobs should be secured in helping fish to reproduce. Hatcheries should be opened to help the fish repopulate even quicker. This not only helps the fish but also helps the community if jobs
were to be lost. If developed and followed through properly neither the fishing industry nor the fish populations should be hurt.

This plan should help the fishermen maintain levels of income and also help communities learn the danger of overfishing. Opening hatcheries will help jobs and increase fish populations. Environmentalists, after a couple of years, should be able to relax knowing that fish populations are on the rise once again. Both sides must cooperate in order to succeed. References: National Geographic News, May 2003 Big-Fish Stocks Fall 90 Percent Since 1950, StudySays, Retrieved August 23rd, 2008 from http://news. nationalgeographic.
com/news/2003/05/0515_030515_fishdecline. html Itano, D, 2000, Pelagic Fisheries Research Program, Reproductive Biology of Yellowfin TunaThunnus albacares, in Hawaiian Waters and the Western Tropical Pacific Ocean. Retrieved August 24th, 2008 from http://www. soest. hawaii. edu/PFRP/biology/itano.
html Axia College VLR, 2008, Declining Fish Stock, Retrieved August 23rd, 2008 fromhttps://axiaecampus. phoenix.
edu/secure/aapd/axia/sci275/multimedia/video/declinining

