# Example of essay on physics 

Health \& Medicine, Stress

## Experiment 1: Boyle's Law

Introduction:
Boyle's law is very important to know characteristics of gases. Scientist Robert Boyle expressed how volume of a gas changes with change of pressure in a given temperature. In this lab report Boyle's Law has been discussed with an experiment carried out in laboratory. Objective of this experiment was to measure the number of moles ( $n$ ) of air enclosed in a tube using Boyle's law.

## Theory:

As per Boyle's law, pressure $P$ of a given amount of gas ( $n$ moles) is inversely proportional to it volume V when temperature T remains a constant.

The universal gas law is $\mathrm{PV}=\mathrm{nRT}$
$P=n R T / V$

## A graph of $P$ against $1 / V$ will be a straight line and its slope gives the value of $n$ RT.

Procedure:
A cylinder, graduated in mL, was used in this experiment. It was fitted to a wooden base at the closed end and a piston at the other end. The piston was fitted with a platform on which loads was added to increase the pressure of the enclosed air. A set of 500 g-weights was used. Diameter of the piston was 2.2 cm . Following is the sketch of apparatus-

At first reading corresponding to the bottom end of the piston was taken. This reading was recorded as the volume of the air when the load on the platform was zero. The corresponding pressure was approximated to be the
atmospheric pressure (1.01 x 105 Pa ) for this experiment. Then a 500 g mass was loaded on the platform and the volume of the air was measured. This load on the piston was increased by $500 \mathrm{~g}=0.5 \times 9.8=4.9 \mathrm{~N}$. This procedure was repeated 5 more times by loading masses in steps of 500 g . Each time volume of the air and its pressure was measured.

## Experimental data and data analysis:

The diameter of the piston $=2.2 \mathrm{~cm} .=0.022 \mathrm{~m}$.
So, area of piston, $A=3.14 / 4 \times 0.022 \wedge 2=0.01727 \mathrm{~m} 2$
The increase in pressure on the air inside was $P=4.9 / 0.01727=283.73 \mathrm{~N} /$ m2

The actual pressure of the air inside is $(1.01 \times 105+9.8 / 0.01727)=$ 1015678. 5 Pa.
7. Questions.
(i)A sample of gas collected in a 350 cm 3 container exerts a pressure of 103 kPa. What would be the volume of this gas at 150 kPa of pressure? (Assume that the temperature remains constant.)

## Solution

Say, for initial case : V1 $=350 \mathrm{~cm} 3, \mathrm{P} 1=103 \mathrm{kPa}$
Later case : P2 = 150 kPa , and V2
As, $\mathrm{PV}=\mathrm{nRT}$, where R and T constant ; so P1V1 $=\mathrm{P} 2 \mathrm{~V} 2$
Or, $350 \times 103=150 \times \mathrm{V} 2$
Or, V2 = 240. 33 cm 3 (Ans: )
(ii)A sample of neon has a volume of 239 cm 3 at 2.00 atm of pressure.

What would the pressure have to be in order for the gas to have a volume of 5. $00 \times 102 \mathrm{~cm} 3$ when temperature is a constant?

## Solution

Say, for initial case : V1 $=239 \mathrm{~cm} 3, \mathrm{P} 1=2$ atm of pressure
Later case : P2, and V2 $=500 \mathrm{~cm} 3$
As, PV = nRT, where R and T constant ; so P1V1 = P2V2
Or, $239 \times 2=500 \times \mathrm{P} 2$
Or, P2 $=0.956$ atm of pressure (Ans: )
(iii)Under a pressure of 172 kPa , a gas has a volume of 564 cm 3 . The pressure is decreased, without changing the temperature, until the volume of the gas is equal to $8.00 \times 102 \mathrm{~cm} 3$. What is the new pressure?

## Solution

Say, for initial case : V1 = $564 \mathrm{~cm} 3, \mathrm{P} 1=172 \mathrm{kPa}$
Later case : P2 , and V2 = 800 cm 3
As, $\mathrm{PV}=\mathrm{nRT}$, where R and T constant ; so P1V1 $=\mathrm{P} 2 \mathrm{~V} 2$
Or, $564 \times 172=800 \times \mathrm{P} 2$
Or, P2 = 121. 26 kPa (Ans: )

