Life assignment

What is the value of an ordinary annuity at the end of 10 years if $\$ 300$ is deposited each quarter into an account earning 7 \% compounded quarterly? Also, of this total value, how much did you contribute and how much is from the interest? For 40 deposits of $\$ 300$ each with [pick], we find the accumulated value as [pick] The total interest earned is the difference between the amount in the account and what you actually deposited: 17170. 24 \$5170. 24.

An individual deposits $\$ 600$ per month into an account paying 7. \% compounded monthly. How much money will be in the account in 5 years? These 60 deposits have an accumulated value of A person wishes to have $\$ 300,000$ in an account 16 years from now. How much should be deposited each quarter in an account paying 8 \% compounded quarterly in order to achieve this goal. For 64 deposits of $\$ \mathrm{X}$ each, we are given the accumulated value [pick]. Thus, solving for X we find Changing the deposit size: What if the size of the deposits changes at some point?

For example, suppose 12 monthly deposits of $\$ 100$ each during the first year are followed by 24 monthly opposite of $\$ 150$ each over the next two years. If the nominal interest is [pick], find the accumulated value at the end of the 3 years. Consider the following two ways of thinking about these deposits. Approach \#1 We may consider and sum the first 12 deposits separately from the final 24 deposits. E TLS 12 deposits yield but taking this forward (with interest) to time $t=36$ gives a value of The next 24 deposits yield as of the final deposit at time $t=36$.

Thus taken together, the accumulated value at time t Approach \#2 $=36 \mathrm{We}$ may consider the extra $\$ 50$ a month during the final 24 deposits as a separate annuity and sum these $\$ 50$ deposits separately. The 36 deposits of $\$ 100$ each yield an accumulated value of The 24 deposits of $\$ 50$ each yield an accumulated value of as of the final deposit at $t=36$. Thus taken together, the accumulated value at time $t=36$ is $\$ 3898.51+1264.20=$ 5162. 71, Just as in approach \#1. See problem 2. 1. In Overran for another illustration of these two equivalent approaches. Typical problem from Overran: Read problem 2. 1. 3 in the text. Consider the deposits as annuities of n deposits each. This meaner that We're given that [pick] and so [pick]. Hence, r simply, But since [pick], we find that [pick] MAT 450 Assignment: Work the following problems. Submit solutions this Friday. Problem AAA: An individual deposits $\$ 750$ per month into an account with a nominal rate of [pick]. Determine the accumulated value at the end of 4 years.

Problem AAA: An individual deposits $\$ 100$ per week into an account with an effective annual rate of [pick]. Determine the accumulated value at the end of 3 years. Problem AAA: An individual deposits $\$ 400$ per month into an account with a nominal rate of [pick]. Determine the number of deposits required to achieve an accumulated alee of $\$ 46580$. 75. Problem 2. 1. 2 (see text) Compute [pick] and determine I TTS value 3 periods later (IEEE, upon the 33rd deposit) Compute [pick] and determine its value 4 periods later (IEEE, upon the 33rd deposit).

Compute [pick]. The sum of these values is the account balance upon the 33rd deposit. The account will be credited with interest of 1% of this balance the following month. Problem 2. 1. 7 (see text) Determine each individuals
accumulated value after n years. For Smith, we have For Brown, we have For Brown, there are n-10 years of dividends and so his total value is [pick] For the suggested values of n, set Smith's and Brown's totals equal to each other and solve for p. Problem 2. . 9 (see text) Here the deposits are $\$ 1$ per year but the interest changes after m years. So treat 3536 the first m deposits separately from the last n deposits. Thus the sum of these two accumulated totals may be computed using Compute this total. 10010015015015013 141210015015010010010050509821213981961419619100 . 10 201961962815015029 deposit: 1 years 1001100100100100 dividends: 8080 sale proceeds: dividends: 80802001140 m m+l 1 pop n+m

