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Introduction 
Nontuberculous mycobacteria (NTM), including organisms of the 

Mycobacterium avium complex (MAC), represent a significant and growing 

threat to human health worldwide. Since the beginning of the AIDS epidemic 

in the 1980s, the prevalence of MAC infection has increased substantially 

worldwide ( 1 ). MAC is widely distributed in the environment, including in 

water and soil, and is transmitted via inhalation into the respiratory tract 

and via ingestion into the GI tract ( 2 ). The most common clinical syndromes

caused by MAC are pulmonary infection in patients with underlying lung 

disease, as well as disseminated disease in the severely 

immunocompromised ( 3 , 4 ). A recent review of MAC pulmonary disease 

worldwide reported a five-year all-cause mortality rate of 27% ( 5 ). 

In addition to the virulence factors common to all mycobacteria, MAC 

possesses several unique features which may contribute to pathogenesis. 

For example, MAC demonstrates increased resistance to phagosome-

lysosome fusion and oxidative damage in murine macrophages, suggesting a

unique ability to survive within activated macrophages ( 6 ). MAC can escape

from macrophages undergoing apoptosis and survive extracellularly, evading

the cytotoxic response necessary to eliminate intracellular bacteria ( 7 ). 

MAC also expresses several unique glycopeptolipids, which may modulate 

macrophage signaling cascades, thereby preventing an effective 

inflammatory response ( 8 ). 

Treatment of MAC is challenging. Current treatment recommendations vary 

depending on the underlying conditions, severity of disease, and in vitro 
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susceptibility profile. Macrolide-susceptible pulmonary disease is generally 

treated with a three-drug regimen, which includes a macrolide, ethambutol 

and a rifamycin, for at least 12 months after negative sputum-culture 

conversion ( 9 ). MAC often exhibits resistance to first-line antibiotics, and in 

vitro susceptibility testing for non-macrolide drugs has poor correlation with 

clinical efficacy. MAC pulmonary infection can present as cavitary disease 

with long-term respiratory sequelae. A milder form of the disease, which 

manifests as fibronodular bronchiectasis has a slower progression, but has 

been linked to increased mortality ( 10 ). 

In the face of the increasing prevalence, high mortality, and treatment 

challenges associated with MAC infections, new therapeutic options are 

urgently needed. A promising avenue of research is that of host-directed 

therapies (HDTs). HDTs are adjuncts to antimicrobial therapy, differing from 

the latter in that they target host processes rather than the pathogen itself. 

The goal of HDTs is to boost protective immune responses, especially those 

inhibited or otherwise modified by the pathogen, and prevent excessive 

pathological inflammation ( 11 , 12 ). Unlike novel antibacterial agents, they 

also confer the advantage of not contributing to drug resistance or cross-

resistance to conventional antibiotics ( 12 ). Although HDTs are an active 

area of investigation in the therapy of tuberculosis (TB), as well as many 

non-mycobacterial infectious diseases ( 11 – 15 ), there has been a relative 

dearth of research into the potential of HDTs as adjunctive therapies for 

disease caused by MAC ( 16 ). 
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In the current review, we summarize HDT agents which are currently under 

investigation for MAC disease, as well as other HDTs and potentially 

targetable host pathways, which have not been investigated directly for 

MAC, but which show promise for future research. 

Improvement of Antimycobacterial Immunity 
Enhancing Autophagy: mTOR Inhibitors 
Autophagy is a key self-degradative process in which the cytoplasmic 

contents of a cell are taken up by autophagosomes, trafficked to the 

lysosome, and digested ( 17 ). Although basal levels of this process occur in 

every cell, stress conditions, such as nutrient deficiency or pathogen 

infection, induce autophagy as a way of establishing homeostasis ( 18 , 19 ). 

Autophagy plays a role in multiple physiological and pathological pathways, 

including the clearance of mycobacteria and other intracellular pathogens (

17 ). 

Initiation of autophagy is dependent on the Unc-51-like kinase-1 (ULK1) 

complex. This initiator complex is, in turn, regulated by the master regulator 

of autophagy, mammalian target of rapamycin (mTOR). mTOR plays a critical

role in cellular metabolism, promoting anabolism and suppressing catabolic 

processes, such as autophagy ( 20 ). mTOR signaling is complex and can be 

activated or inhibited by a wide variety of molecules and signaling pathways.

Nutrient states, particularly amino acid levels at the cellular level, serve as 

the main signal for mTOR activation. In nutrient-rich states, mTOR exerts an 

inhibitory effect on the ULK1 complex, leading to suppression of autophagy (

21 ). Because of its important role in metabolism and cell growth, mTOR 
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inhibition is a therapeutic target for a number of diseases, including 

autoimmune disorders and cancer ( 22 ). Rapamycin and other analogs 

directly inhibit mTOR activity, and vitamin D blocks upstream signaling to 

activate mTOR ( 22 , 23 ). During Mycobacterium tuberculosis (Mtb) 

infection, the activation of both intracellular or extracellular surface pattern 

recognition receptors (PRRs) by certain unique Mtb-associated molecules, 

such as lipomannan, lipoarbinomannan, phthiocerol dimycocerosate (PDIM), 

lipoproteins, mycolic acid and Mtb DNA/RNA, induces autophagy ( 24 , 25 ). 

Given that autophagy plays an important role in mycobacterial clearance, 

and MAC can survive intracellularly by blocking phagosome-lysosome fusion,

enhancing autophagy through inhibition of the mTOR pathway appears to be 

an attractive HDT strategy ( 26 , 27 ). 

To date, there has been little research on targeting autophagy to improve 

host control of MAC infection. Early et al . reported that induction of 

autophagy by lactoferrin increases MAC killing by macrophages and renders 

the bacteria more susceptible to ethambutol, suggesting that autophagy is 

worthy of further investigation as an HDT target ( 28 ). Although they have 

not been studied in the context of MAC infection, mTOR inhibitors have been 

explored as HDTs for Mtb, with mixed results ( 29 ). Most data from in vitro 

studies have suggested that mTOR inhibition may result in enhanced 

intracellular killing of Mtb, however there is also some contrasting evidence 

to suggest that induction of autophagy results in increased Mtb growth, 

especially in the context of Mtb/HIV co-infection ( 30 , 31 ). Vitamin D, an 

upstream inhibitor of mTOR signaling, also has shown some promise as an 
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HDT for TB, although clinical trials do not show a consistent benefit, and it 

has not been investigated specifically against MAC ( 32 ). 

Aside from autophagy, mTOR is involved in multiple metabolic and 

immunological pathways, which could affect mycobacterial pathogenesis and

immunity. As a whole, the role of mTOR and autophagy in MAC infection 

remains largely unexplored, and further research is required to evaluate its 

suitability as an HDT target. 

Blocking the PD-1/PD-L1 Pathway: Anti-PD-1/PD-L1 Therapy 
The Programmed Cell Death Protein-1 (PD-1) and its ligand, PD-L1, are the 

major components of the PD-1/PD-L1 pathway, an immune checkpoint, which

regulates peripheral immune tolerance and suppresses inflammation ( 33 ). 

PD-1 is expressed on multiple cell types, including activated T cells, B cells, 

natural killer cells, and macrophages. PD-L1 is expressed on nonlymphoid 

cells. Binding of PD-1 to PD-L1 inhibits proliferation and effector functions of 

T and B cells, preventing self-reactivity ( 34 ). PD-L1 is highly expressed on 

tumor cells and virus-infected cells, conferring resistance to cell-mediated 

immunity. PD-L1 is also expressed on macrophages and plays a role in 

regulating immunosuppressive and pro-inflammatory activity. PD-L1 

signaling in tumor-associated macrophages induces an immunosuppressive 

phenotype ( 35 ). Recently, the PD-1/PD-L1 pathway has become the subject 

of extensive research in cancer immunotherapy, as PD-1/PD-L1 antibody 

blockade has demonstrated efficacy in inducing cell-mediated immunity 

against multiple cancer types. Treatment of tumor-associated macrophages 

with anti-PD-L1 antibodies confers a pro-inflammatory phenotype, with 

increased expression of inducible nitric oxide synthase (iNOS), MHC II, TNF-α,
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and CD40 ( 36 , 37 ). This is particularly important, since TNF-α and iNOS are

critical effector mechanisms in the killing of intracellular mycobacteria, 

including MAC by macrophages ( 38 ). In patients with MAC pulmonary 

disease, expression of PD-1 by CD4 T cells is directly correlated with disease 

severity ( 39 ). An analysis of peripheral blood mononuclear cell (PBMC) 

function in such patients found that expression of PD-1 and PD-L1 were 

increased in lymphocytes of infected patients, which correlated with 

increased lymphocyte apoptosis compared to lymphocytes from healthy 

controls ( 40 ). Treatment of PBMCs obtained from MAC patients with anti-

PD-1 and PD-L1 antibodies resulted in increased IFN-γ production and 

reduced T-cell apoptosis compared to PBMCs from healthy controls ( 40 ). 

These data suggest that PD-1/PDL-1 therapy could rescue immune cells from

an immunosuppressive phenotype, allowing an improved immune response 

against MAC. 

Although anti-PD-1 therapy may hold promise for treatment of MAC, there is 

some evidence that PD-1 is necessary for mycobacterial immunity, 

particularly against Mtb. Thus, mice deficient in PD-1 are more susceptible to

Mtb infection ( 41 ). In Mtb granulomas, PD-1 is expressed in stable, cellular 

granulomas, but not in caseating ones, suggesting that it plays a role in 

granuloma maintenance. In a three-dimensional cell culture model, PD-1 

inhibition led to increased Mtb growth, possibly due to excessive TNF-α 

expression ( 42 ). 

The potential of anti-PD-1/PDL-1 therapy to improve the immune response to

MAC remains to be investigated, both in vitro and in vivo . As anti-PD-1/PD-L1
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therapy becomes more common in cancer therapy, retrospective analyses of

its effect on patient susceptibility to MAC disease and clinical outcomes 

following MAC therapy may be useful. 

Heme Oxygenase Inhibition 
Heme oxygenase (HO-1) is an antioxidant enzyme that catalyzes the 

conversion of heme into carbon monoxide, biliverdin and iron ( 43 , 44 ). 

Apart from its role in cytoprotection, HO-1 has been shown to regulate cell 

proliferation, differentiation, and apoptosis ( 44 ). The induction of pulmonary

HO-1 is associated with TB disease ( 45 ), suggesting its potential utility as a 

diagnostic biomarker. Although its role in TB pathogenesis is not fully 

understood, experimental data in Mtb-infected mice have shown that lung 

bacterial loads decrease following HO-1 inhibition by the metalloporphyrin, 

SnPPIX ( 45 ). The same study found that a combination of an HO-1 inhibitor, 

SnPPIX and antimycobacterial therapy enhanced T-cell-dependent pathogen 

clearance. Clinical data have shown that plasma HO-1 levels decline 

following successful TB treatment ( 46 ). 

As in the case of Mtb infection, HO-1 has been found to be elevated during 

MAC infection in BALB/c mice ( 47 ). Consistent with a host protective role in 

resisting MAC infection, mycobacterial burden in the liver, lungs and spleen 

was significantly higher and the disease was more likely to be disseminated 

in mice with HO-1 deficiency compared to HO-1 homozygous or 

heterozygous mice ( 47 , 48 ). Further investigation is required to determine 

how HO-1 activity is regulated during MAC infection, and whether HO-1 

inhibition is a promising HDT in the context of MAC. 
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IFN-γ Therapy 
IFN-γ plays a significant role in immunity against Mycobacterium infections. 

In contrast to type I IFNs (α and β), which are made by virus-infected cells, 

IFN-γ is produced by activated T cells, NK cells, and macrophages, leading to 

the activation of phagocytes, stimulation of antigen presentation to T cells, 

and regulation of several other cellular functions, including proliferation, 

apoptosis, and cell adhesion ( 49 ). In particular, IFN-γ induces the 

expression of iNOS ( 50 ) and the respiratory burst enzyme NADPH-

dependent phagocyte oxidase ( 51 ), thereby enhancing the 

mycobactericidal activity of macrophages. Mice with mutations in the IFN-γ 

receptor have been shown to have increased susceptibility to intracellular 

pathogens ( 52 ). Pre-treatment of intestinal and peritoneal-derived 

macrophages with IFN-γ produced both bactericidal and bacteriostatic 

activity against MAC following infection of these cells ( 53 , 54 ). Although in 

vivo treatment of beige and Swiss-Webster mice with recombinant murine 

IFN-γ did not alter the course of visceral MAC infection ( 55 ), the bactericidal

activity of clofazimine against MAC was enhanced in beige mice pre-treated 

with IFN-γ ( 54 ). 

Mutations in the IFN-γ receptor gene or anti-IFN-γ autoantibodies confer 

increased susceptibility to disseminated NTM infections in humans ( 56 – 58

). IFN-α, which, like IFN-γ, signals through STAT1, activating many common 

downstream effector genes, has shown some promise in treating patients 

with IFN-γ signaling defects and disseminated mycobacterial disease ( 59 ). 

In a study of 7 patients with disseminated MAC infection, subcutaneous 

administration of IFN-γ, in combination with conventional medical treatment, 
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resulted in improvement in symptoms, and pathological and radiological 

findings, and also reduced the need for medical procedures, such as 

paracentesis following 8 weeks of treatment ( 60 ). Aerosolized IFN-γ has 

shown some promise in treating patients with TB and idiopathic pulmonary 

fibrosis, and is worthy of study in patients with pulmonary MAC ( 61 ). 

Prevention of Excessive and Pathological Inflammation 
Suppressing Excessive TNF-α Activation: Anti-TNF Antibodies 
Tumor necrosis factor alpha (TNF-α) is a pro-inflammatory cytokine which is 

upregulated during MAC and Mtb infection and plays an essential role in 

antimycobacterial immunity ( 62 ). During mycobacterial infection, T cells, 

macrophages, and dendritic cells produce TNF-α in response to multiple 

signaling pathways ( 63 ). TNF-α signaling is complex, and the cytokine 

serves multiple functions, including in the formation and maintenance of 

granulomas, as evidenced by the observation that mice deficient in TNF-α or 

receiving anti-TNF-α therapy produce defective granulomas following 

mycobacterial infection ( 64 , 65 ). TNF-α also promotes killing of intracellular

mycobacteria by macrophages, as the TNF blockers adalimumab and 

infliximab suppressed phagosome maturation in primary human PBMCs in 

the presence or absence of IFN-γ ( 66 ) Moreover, TNF-α serves macrophage 

antimicrobial functions by activating reactive oxygen and nitrogen species (

67 ). Treatment with anti-TNF-α antibody has been associated with 

decreased resistance to MAC infection in mice ( 68 ). 

Although TNF-α is required for an effective immune response, excessive TNF-

α production has deleterious pathological effects. Thus, when its production 
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is properly regulated, TNF-α induces apoptosis of Mtb-infected infected cells 

by recruiting Fas-associated protein with death domain (FADD) and 

subsequent activation of effector caspases and signal-regulating kinase 1 

(ASK1), thus favoring mycobacterial clearance ( 63 , 69 , 70 ). However, 

when produced in excessive amounts, TNF-α results in necrosis of Mtb-

infected macrophages and hyperinflammation through activation of 

serine/threonine-protein (RIP)1/3 kinases and mitochondrial reactive oxygen 

species (ROS) production ( 70 – 72 ). TNF-α also induces necroptosis, a highly

inflammatory form of cell death, which could contribute to pathological 

inflammation ( 73 ). 

Because of its roles in mycobacterial immunity and pathology, TNF-α has 

been a focus of HDT investigation. Multiple anti-TNF antibodies and TNF 

soluble receptors have been approved for use in humans to block TNF-α 

activity, and are primarily used to treat autoinflammatory conditions, such as

rheumatoid arthritis. TNF blockers have shown some promise as HDTs for 

mycobacterial infections. Combined use of the TNF-α receptor inhibitor 

etanercept with antibiotics decreased the lung burden of Mtb and reduced 

TB-associated lung pathology in infected mice compared to antibiotics alone 

( 74 ). However, the role of anti-TNF therapy in clinical cases of 

mycobacterial infection is controversial. Patients receiving anti-TNF therapy 

are at increased risk for developing disease due to Mtb and MAC ( 75 – 77 ). 

After a diagnosis of TB or MAC disease is made, anti-TNF therapy is usually 

halted at least until anti-mycobacterial therapy has been initiated and the 

infection is under control. On the other hand, there are several reports of TB 

patients experiencing clinical exacerbation upon discontinuation of anti-TNF 
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treatment, and improvement of disease following its reinstitution ( 78 – 80 ). 

In addition, a subset of MAC-infected patients show favorable outcomes if 

anti-TNF therapy is maintained throughout treatment ( 76 ). However, it is 

uncertain in these cases whether anti-TNF therapy contributed as an 

adjunctive HDT or by ameliorating the underlying autoimmune disease. 

The roles of TNF-α in mycobacterial immunity and disease are complex, and 

the therapeutic potential and risk of inhibiting TNF-α function during MAC 

infection require further investigation. Given the relatively long half-lives of 

most TNF blockers relative to antibiotics, there is concern over sudden 

stoppage of all treatment by patients, resulting in the unopposed anti-TNF 

activity and possible worsening of infection ( 81 ). Since TNF-α interacts with 

multiple other signaling pathways, further research is also needed to identify

other cytokines which, if targeted in tandem with TNF-α, could hold promise 

as HDTs. 

Broad Suppression of Inflammation: Nonsteroidal Anti-Inflammatory Drugs 
and Corticosteroids 
Excessive and chronic inflammation is an important factor in the progression 

of mycobacterial disease ( 82 ). Thus, the broad inhibition of the 

inflammatory response by non-steroidal anti-inflammatory drugs (NSAIDs) or 

corticosteroids is an attractive HDT strategy. NSAIDs have been well-studied 

as adjunctive therapies for TB, with a protective effect, both in animal 

models and in human disease, when used in conjunction with antibiotics ( 83

). There are multiple proposed mechanisms for these effects. NSAIDs 

suppress the excessive recruitment of neutrophils to granulomas, which can 

be responsible for destructive inflammation ( 84 , 85 ). By reducing 
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prostaglandin E2 (PGE2) expression, NSAIDs also inhibit phagocytosis and 

killing of mycobacteria during late TB ( 86 ). NSAIDs have anti-thrombotic 

effects, which may prevent the hypercoagulable state occasionally observed 

with severe TB ( 87 , 88 ). Despite their relatively well-characterized role as 

an adjunctive therapy for TB, there has been little research into NSAIDs as 

HDTs for MAC. The NSAID diclofenac sodium modulates multiple cytokines in 

MAC-stimulated macrophages but does not improve bacterial clearance by 

macrophages or infected mice ( 89 ). Although NSAIDs can prevent 

destructive inflammation, they might also inhibit an effective immune 

response. This is especially concerning for MAC, since an 

immunocompromised state is a major risk factor for disseminated MAC 

disease ( 10 ). NSAIDs have not been causally linked to MAC disease, but 

long-term NSAID use has been identified as a possible predisposing factor in 

at least one case ( 90 ). 

Corticosteroids are some of the earliest HDTs used for mycobacterial disease

and may be useful in treating patients with late-stage and extrapulmonary 

TB ( 91 , 92 ). In particular, short-term steroid use, by reducing inflammation 

caused by antibiotic-mediated killing of mycobacteria and accompanying 

increased intracranial pressure, has been shown to improve mortality by as 

much as 25% in patients with tuberculous meningitis ( 93 ). Similar to 

NSAIDs, the beneficial effect of corticosteroids is primarily attributed to the 

suppression of pathological inflammation. Corticosteroids exert their anti-

inflammatory effects through a variety of mechanisms, including by inducing

transcription of anti-inflammatory genes, such as annexin-1, IL-10 and IκB-α 

(inhibitor of NF-κB), by direct interacting with NF-κB, AP-1 and other 
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immunomodulatory transcription factors, inhibiting maturation and 

differentiation of antigen presentation cells with reduced sensitivity to T cell 

regulation, and promoting the formation of macrophages with anti-

inflammatory properties ( 94 ). 

The use of corticosteroids as an HDT for MAC disease is somewhat 

controversial, due to their immunosuppressive effects and the lack of 

controlled studies ( 95 – 97 ). Although there is a significant body of research

on the use of corticosteroids in reducing inflammation due to a variety of 

infectious diseases, their specific role as an adjunctive HDT for MAC disease 

has not been studied. Further research is required to understand the effects 

of corticosteroids on MAC infection on the molecular, cellular, and organismal

level, to determine whether their use is justified or contraindicated in specific

stages of MAC disease. 

Multiple Mechanisms of Action 
Targeting Lipid Metabolism and Inducing Autophagy: Statins 
The 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors 

(statins) are a class of lipid-lowering medications, which have shown promise

as HDTs for TB ( 98 ). PBMCs from patients with familial 

hypercholesterolemia receiving statin therapy demonstrate resistance to ex 

vivo Mtb infection compared to those from untreated donors ( 99 ). 

Adjunctive therapy with simvastatin enhanced the bactericidal activity of the

first-line anti-mycobacterial regimen in a mouse model of chronic TB and 

shortened the duration of curative treatment in a murine model of TB relapse

( 100 , 101 ). Consistent with a class effect of statins, pravastatin adjunctive 
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therapy showed a dose-dependent reduction in bacillary lung burden and 

decreased lung inflammation in conjunction with front-line chemotherapy in 

a mouse model of chronic TB ( 102 ). Mechanistically, statins reduce the 

formation of lipid droplets in foamy macrophages, which may serve as a 

nutrient source for intracellular Mtb and contribute to antibiotic tolerance (

99 , 103 ). However, the primary HDT mechanism of action of statins likely 

involves the promotion of phagosome maturation and autophagy, thereby 

improving clearance of Mtb by infected macrophages ( 99 ). Statins enhance 

autophagy of Mtb-infected macrophages by blocking mTORC1, activating 

AMP-activated protein kinase (AMPK) and favoring nuclear translocation of 

transcription factor EB (TFEB) ( 104 ). Although the role of lipid-laden, foamy 

macrophages in MAC pathogenesis is less well understood than in TB, 

morphologically similar phenotypes have also been described in MAC-

infected macrophages, and it is possible that statins could have similar HDT 

effects ( 105 ). 

Activation of AMPK and Potentiation of Macrophage Effector Function: 
Metformin 
Multiple studies have found that use of the anti-hyperglycemic drug 

metformin reduces the risk of TB and improves clinical outcomes in patients 

with diabetes mellitus ( 106 , 107 ). Experimental evidence indicates that 

metformin has multiple host-directed effects, which may promote clearance 

of MAC. The drug enhances mycobacterial killing in human PBMCs by 

promoting autophagy and phagosome-lysosome fusion, as well as by 

selectively increasing mitochondrial ROS production ( 108 ). Metformin has a 

dose-dependent inhibitory effect on intracellular replication of mycobacteria 
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through activation of the adenosine monophosphate-activated protein kinase

(AMPK) signaling pathway ( 109 ). Metformin also suppresses TNF-α 

expression in human monocytes ( 110 ). In Mtb-infected mice, metformin 

adjunctive therapy is associated with reduced chronic lung inflammation, 

enhanced immune responses, and improved efficacy of antibiotics ( 111 , 

112 ). In contrast, Dutta et al . showed that adjunctive therapy with human-

equivalent doses of metformin did not enhance the bactericidal or sterilizing 

activities of the first line antitubercular regimen in Mtb-infected BALB/c mice 

( 111 ). Given the widespread use of metformin and the high prevalence of 

MAC disease, retrospective analyses of the effect of metformin on MAC 

microbiological and clinical outcomes would be useful to gauge its promise 

as an adjunctive HDT for MAC. 

Immunomodulation and Antimicrobial Properties: Clavanin-MO 
Clavanin-MO is a naturally occurring antimicrobial peptide which possesses 

immunomodulatory properties ( 113 ). Both in vitro and in vivo , clavanin-MO

stimulates production of inflammatory mediators, including IFN-γ, 

granulocyte-macrophage-stimulating factor, and monocyte chemoattractant 

protein-1, while suppressing the pro-inflammatory cytokines IL-12 and TNF-α 

( 113 ). Clavanin-MO protects animal models from infection by both gram-

positive and gram-negative bacteria ( 113 ). Although clavanin-MO has not 

been tested against mycobacteria, its immunomodulatory effects could 

potentially improve the immune response against MAC while blocking 

pathological inflammation, especially since it affects both IFN-γ and TNF-α, 

which are targets of other promising HDTs. 
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Potentiation of Macrophage Effector Function and Antimicrobial Activity: 
Thioridazine 
Thioridazine is a neuroleptic drug, which has both direct antimycobacterial 

and host-directed effects ( 114 , 115 ). The drug acts directly against Mtb by 

inhibiting antibiotic efflux pumps, thereby enhancing antibiotic susceptibility 

in vitro ( 116 ). Thioridazine also affects the host by inhibiting mammalian 

efflux pumps in the macrophage, leading to acidification of the phagosome 

and improving mycobacterial clearance ( 114 , 117 ). Although its efficacy as

an adjunctive therapy in murine models of chronic TB is controversial ( 118 , 

119 ), thioridazine was found to reduce the emergence of isoniazid-resistant 

mutants in Mtb-infected mouse lungs following co-administration with the 

standard anti-TB regimen ( 120 ). Thioridazine has been suggested as an 

adjunctive therapy for MAC, but research in this area has been limited ( 121 

– 123 ). A short course of thioridazine and moxifloxacin was sufficient to clear

MAC from infected monocytes ( 122 ). However, the pharmacokinetics of 

thioridazine may prevent it from reaching effective concentrations in the 

lung, thus limiting its clinical utility in MAC pulmonary disease ( 121 , 123 ). 

HDTs With Unknown or Poorly Understood Mechanisms of 
Action 
Poloxamer CRL-1072 
Poloxamer CRL-1072 is a surfactant which makes mycobacteria more 

susceptible to some antibiotics, possibly through disruption of mycobacterial 

surface lipids ( 124 ). Its effects are especially pronounced in macrophages 

and mice compared to broth culture, suggesting that it has an effect on the 

host response to mycobacterial infection ( 124 ). The mechanisms of action 

of CRL-1072 are poorly understood. The surfactant induces production of 
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nitric oxide in cultured human macrophages, leading to improved clearance 

of MAC ( 125 ). In addition, CRL-1072 induces production of IL-8 in human 

macrophages, a chemotactic factor which attracts neutrophils and T cells to 

the site of infection ( 126 ). To date, there has been little research on CRL-

1072, and much remains unknown about its potential as an HDT. An 

important consideration is that, as a surfactant, CRL-1072 would likely have 

to be delivered topically to the lungs via inhalation. There is precedent for 

inhaled therapies for MAC with the recently FDA-approved Amikacin 

Liposome Inhalation Suspension (ALIS) ( 127 ). 

Picolinic Acid 
Picolinic acid is a degradation product of L-tryptophan with metal-chelating 

properties ( 128 ). An oral formulation, chromium(III) picolinate is safe and 

available as a nutritional supplement ( 129 – 131 ). Experimentally, it has 

both antimicrobial and host-directed effects against MAC. Specifically, 

picolinic acid potentiates the antimicrobial effects of clarithromycin, 

rifampicin, and some fluoroquinolones against both extracellular and 

intracellular MAC, suggesting that it has direct antimicrobial activity, which 

may be due to its iron-chelating properties ( 132 ). When used together with 

IFN-γ, picolinic acid also triggers apoptosis of MAC-infected mouse 

macrophages, thereby inhibiting intracellular mycobacterial growth ( 133 , 

134 ). Picolinic acid may also increase expression of TNF-α and interleukin-1, 

improving macrophage effector function ( 135 ). On the other hand, picolinic 

acid does not upregulate production of β-defensin-1, free fatty acids, or 

reactive oxygen and nitrogen intermediates ( 136 ). Therefore, its 

potentiation of macrophage effector functions remains poorly understood. 
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HDT Target Pathways for Future Investigation 
HIF-1α 
Hypoxia-inducible factor-1 alpha (HIF-1α) is a key regulator of cellular 

metabolism in hypoxic environments and is involved in the immune 

response, even under normoxic conditions ( 137 ). HIF-1α is thought to play 

an important role in immunity to mycobacterial infection. In zebrafish, 

stabilization of HIF-1α protects against M. marinum infection ( 138 ). The 

protective effect is related to upregulation of IL-1β in macrophages, which 

results in increased nitric oxide production by neutrophils ( 139 ). There is 

also evidence that HIF-1α plays multiple roles in the macrophage response to

Mtb infection by mediating IFN-γ-dependent genes, regulating immune 

effectors, shifting metabolism to aerobic glycolysis, and blocking excessive 

inflammation ( 140 – 142 ). In general, HIF-1α promotes a pro-inflammatory 

state, which may improve mycobacterial clearance early in infection, but 

also induces pathological inflammation and immune exhaustion during 

chronic infection. 

HIF-1α has not been well-studied in the context of MAC infection. However, 

research on other mycobacteria suggests that HIF-1α is a double-edged 

sword. Whereas induction of HIF-1α promotes a pro-inflammatory state, 

which may improve mycobacterial clearance early during the course of 

infection, it can also lead to pathological inflammation and immune 

exhaustion during chronic infection ( 140 , 143 ). Targeting the HIF-1α 

pathway (and its timing) as an HDT strategy for MAC remains to be 

investigated. 
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Broadly Protective HDT Targets Against Intracellular Pathogens 
A recent study screened FDA-approved drugs to identify HDT targets with 

broad protection against multiple intracellular pathogens ( 14 ). Three 

targets were identified which broadly protect THP-1 cells from intracellular 

bacteria: antagonizing G protein receptor (GPCR) signaling, interfering with 

intracellular calcium signaling, and disrupting membrane cholesterol 

distribution ( 14 ). Although mycobacteria have been shown to manipulate G-

protein-coupled receptors to suppress epithelial signaling pathways ( 144 ) 

and to inhibit intracellular calcium signaling, leading to reduced phagosome-

lysosome fusion and increased mycobaceterial survival within human 

macrophages ( 145 ), these cellular pathways have not been directly 

targeted by therapies, and represent an area of potential future 

investigation. 

Conclusions 
Although HDTs represent a promising tool to improve MAC clinical outcomes,

they have been the subject of little research to date. Looking to the future, 

there are several major challenges and opportunities in MAC HDT research 

which remain to be met. Two specific research needs are a better 

understanding of MAC pathophysiology to identify HDT targets, and 

improved model systems to allow investigation of potential HDTs. 

An improved understanding of the host-pathogen interactions during MAC 

disease could reveal additional HDT targets. To date, the majority of HDTs 

against MAC fall into two general categories: improving immune effector 

function or modulating pathologic inflammation. The mechanism of several 

HDTs are not completely understood. A better mechanistic understanding of 
https://assignbuster.com/the-new-frontier-of-host-directed-therapies-for-
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their function could improve our knowledge of MAC pathophysiology and 

identify new pathways to be targeted by HDTs. For example, the efficacy of 

statins in improving TB clinical outcomes suggests that the metabolism of 

mycobacterial-infected cells may be a promising area of investigation ( 102

). 

A lack of in vitro and in vivo experimental models of MAC infection has been 

a major barrier to research. Current model systems are not standardized, 

and do not always yield replicable or clinically useful results ( 146 ). Cell 

cultures cannot entirely recapitulate a disease which involves long-term, 

complex interactions between multiple cell types, tissues and organs, while 

murine models of NTM differ from human disease in their immune responses 

and granuloma structure, and generally do not sustain chronic infection 

unless immune suppression is induced ( 147 ). These deficiencies are 

especially important for investigating HDTs, which may target complex or 

human-specific pathways. Recent advances in model systems will inform 

future HDT research. In silico models could identify promising HDTs prior to 

the expense and difficulty of in vitro and in vivo experimentation. Recent 

developments in organoid models promise to allow better in vitro 

investigation of complex pathways involving interactions between multiple 

cell types and the extracellular matrix. For example, a three-dimensional 

granuloma model has recently been developed for Mtb and could be a 

valuable tool for investigating HDTs if adapted for MAC ( 148 ). 

Finally, there is an unexplored need to investigate the use of HDTs in 

combination. To date, most studies have examined a particular HDT in 
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isolation or in combination with antibiotics. Investigation of HDTs with 

potentially complementary mechanisms could identify therapeutic 

combinations that have a greater effect than the sum of their parts. 

MAC is an emerging infectious disease of particular concern due to its rising 

prevalence, resistance to frontline antibiotics, and associated chronic 

morbidity and mortality ( 1 , 5 , 10 ). HDTs against MAC represent a 

promising but underexplored avenue of research, which could hold great 

potential in improving microbiological and clinical outcomes. 
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