Math problems

Find the least integer n for which $p n(2)$ approximates $f(2)$ with three decimal place accuracy From $f(a+h)$ approximately $f(a)+h f(a)$

When h is small enough in terms of value of $f(a)$ and $f(a)$
it is possible to approximate the value of
f (a+h)
For this case
let approximate the value
Of 2. 1
Therefore 2. 1 can be expressed as
2. $1=2+h$ where
$\mathrm{h}=0.1$
Assuming $f(x)=x$
Then $\mathrm{f} 1(\mathrm{x})=1 / 2 \mathrm{x}$
Therefore, by linear approximation formula
$x+h=x+h / 2 x$
And then
2. $1=2+0 \cdot 1 / 22=$
2. $1=2+0.035$
$=1.4495$
Use Tylor polynomials to estimate the following to within 0.01
e0. 8
$e x=1+x+x 2+x 3+. .+x n$
23 n
e0. $8=1+0.8+0.82+0.83+.+0.8 n$
23 n
$=1+0.8+0.82+0.83$

23
$=1+0.8+0.64+0.212$
26
$=1+0.8+0.32+0.0353$
$=2.1553$
Expand as indicated
Ln (x2)
Let $x 2$ be $(x-1) 2$
Where 2 is constant
$=$ then
$\operatorname{Ln}(x-1) 2=2\{(x-1) 2 /(x+1) 2\}+1 / 3\{(x-1) 3 /(x+2) 3\}+1 / 5\{(x-5) 5 /(x+5) 5\}$
For $\mathrm{x}>0$
For
$(a+b) n=a n+n / 1!a n-1 b+n(n-1) / 2!^{*} a n-2 b 2$.
For this case, let 1 be a and $2 x$ be b
Therefore,
(1-2x)-3
$=1-3+3 / 11 * 1-32 *+-3(-4) / 2!* 1-5+4 \times 2+.$.
$=-1+\left\{\left(-3 / 1!* 1-4 *\left(_2 x\right)\right\}+\right.$
$(-3(-4) / 2 * 1-5 * 4 \times 2)+$.
$=-1+6 x+24 \times 2+2$
$=24 \times 2+6 x-1+2$
Find interval of convergence
$(-1) k(2 / 3) k(x+1) k$
$\operatorname{Lim}(-1) k+1(2 / 3) k+1(x+1) k+1$
$(-1) k(2 / 3) k(x+1) k$
$\operatorname{Lim}(-1)(2 / 3)(x+1)$

1
$=-2 / 3(x+1)$
$=-(x+1) \lim 2 / 3$
$=-x-1 \lim 2 / 3$
$=-2 / 3 x+1$ Therefore interval
$-2 / 3 x+1<1$ Convergence.
2 1/k k
$(x-2) \mathrm{k}$
$K(k+1)(k+2)$
Lim 2 1/r k
$(x-2) \mathrm{k} 1 / k$
$K(k+1)(k+2)(k+1)$
Lim 2 1/k k ($\mathrm{x}-2$) k+1
0
$k(k+1) 2(k+2)$
$=x-221 / k k(x-2) k+1$
$k(k+1) 2(k+2)$
$=0$
Therefore, $\mathrm{f}=0<1$
Evaluation of the given limits
Lim ex-1-x
$x \tan -1 c$
Using hospital rule,

Lim ex-1-x
$x \tan -1 c=\operatorname{Lim} e x-1$
Tan -1c
As the ex-1 and tan -1c tends to zero, then
Lim ex
$\tan -1 \mathrm{c}$
$=1=+$

0

Estimate within 0.01

1
$e-3 x d x$
0
$=[e-3 x] 1$

0
$=[\mathrm{e}-1-\mathrm{e} 0]$
$=[0.368-1]$
$=-0.632$
Reference
Karner. G and Kuich. W, (1997). " Characterizations of Abstract Families of Algebraic Power Series".

