
Mixed properties of 
mhd waves in non-
uniform plasmas

Health & Medicine

https://assignbuster.com/essay-subjects/health-n-medicine/
https://assignbuster.com/mixed-properties-of-mhd-waves-in-non-uniform-plasmas/
https://assignbuster.com/mixed-properties-of-mhd-waves-in-non-uniform-plasmas/
https://assignbuster.com/mixed-properties-of-mhd-waves-in-non-uniform-plasmas/
https://assignbuster.com/


 Mixed properties of mhd waves in non-uni... – Paper Example  Page 2

1. Introduction 
Most textbooks on Magnetohydrodynamics (MHD) and plasma physics 

contain at least an elementary discussion of MHD waves in a uniform plasma

of infinite extent (see e. g., Thompson, 1964 ; Mestel and Weiss, 1974 ; 

Goedbloed, 1983 ; Goossens, 2003 ; Goedbloed and Poedts, 2004 ; Walker, 

2004 ). It is shown that the MHD waves are either Alfvén waves or slow/fast 

magneto-sonic waves. The Alfvén waves are incompressible and propagate 

parallel vorticity. They do not have a parallel component of displacement 

and are driven by magnetic tension only. The magneto-sonic waves are 

compressible and have a parallel component of displacement. They do not 

propagate parallel vorticity and are driven by pressure and magnetic 

tension. In non-uniform plasmas the situation can be very different. The clear

division between Alfvén waves and magneto-sonic waves is no longer 

present. The MHD waves have mixed properties in non-uniform plasmas. 

Mixed properties mean that the general rule is that MHD waves propagate 

both parallel vorticity as in classic Alfvén waves and compression as in 

classic magneto-sonic waves. This behavior causes exciting wave physics. 

For instance, the phenomenon of MHD waves with mixed properties can lead

to damping, with relevance in explaining the attenuation observed in coronal

and prominence oscillations and discussed by Goossens et al. (2002a , 2011)

, Terradas et al. (2006) , Arregui et al. (2008) , Pascoe et al. (2010 , 2011) , 

among many others. The use of the information on wave damping has also 

been found useful to perform solar coronal seismology (see e. g., Goossens 

et al., 2002a , 2008 ; Arregui et al., 2007 ; Goossens, 2008 ). The mixed 

properties arise because in an inhomogeneous plasma the Eulerian 
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perturbation of total pressure couples with the dynamics of the motion (

Hasegawa and Uberoi, 1982 ). Mathematically this is translated into the fact 

that the differential equations for the radial component of the Lagrangian 

displacement ξ r and the Eulerian perturbation of total pressure P ′ are 

coupled to algebraic equations for compression ∇ · ξ → , the parallel and 

perpendicular projections of the Lagrangian displacement ξ ∥ , ξ ⊥ , and 

vorticity ∇ × ξ → 1 . The coupling of the equations is due to the coupling 

functions C A and C S which were introduced by Sakurai et al. (1991b) in their

study of resonant absorption. The relevance of the coupling functions goes 

beyond resonant absorption. The spatial behavior of the coupling functions 

and of the local Alfvén frequency ω A and local cusp frequency ω C determine

the spatial behavior of the various components of velocity and vorticity and 

of compression. The simultaneous presence of compression and vorticity is 

hard to avoid. 

Goossens et al. (2009) investigated the forces that drive these waves and 

found that the magnetic tension force always dominates the pressure force 

for the kink mode. In addition, they showed that compression is small in the 

particular case of thin tubes. Hence, these waves do not have the typical 

properties of fast magneto-sonic waves and behave more as Alfvén waves. 

Goossens et al. (2011) reconsidered these waves in their section on quasi-

modes and decided to call them surface Alfvén waves. In the present paper, 

we continue the theoretical investigation of the nature of the waves. In 

section 2, we describe pure Alfvén and pure magneto-acoustic waves in a 

uniform plasma of infinite extent, by analysing their eigenfrequencies, 

eigenfunctions, vorticity and compression. In section 3, the analysis is 
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generalized to MHD waves in non-uniform plasmas, which propagate both 

compression and parallel vorticity at the same time. This leads to new 

expressions for the components of vorticity that are derived for axi-

symmetric/non-axi-symmetric motions in a non-uniform 1-dimensional 

cylindrical plasma. In section 4, we show that resonant Alfvén /slow waves 

are characterized by strong shear in the perpendicular/parallel component of

displacement with large values of the parallel/perpendicular component of 

vorticity. This strong shear causes violent KH-instabilities ( Terradas et al., 

2008 ; Antolin et al., 2018 ) that accelerate the damping of the MHD waves 

and facilitate heating of plasma ( Antolin et al., 2015 ; Arregui, 2015 ; 

Terradas and Arregui, 2018 ). 

2. Linear MHD Waves of a Uniform Plasma of Infinite 
Extent 
The properties of MHD waves in a uniform plasma of infinite extent are often 

used to characterize MHD waves in general. For a uniform plasma of infinite 

extent the MHD waves can be subdivided into two classes with distinct 

properties. The first class contains the magneto-sonic waves. They are 

compressive but do not propagate parallel vorticity. The second class 

contains the Alfvén waves. Alfvén waves propagate parallel vorticity and are 

incompressible. The equilibrium quantities are constant. The constant 

magnetic field 

B 0 → = B 0 1 → z , ( 1 ) 

is used to define the direction of the z - axis of a Cartesian system of 

coordinates. The equilibrium density and pressure are constant 
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p 0 = constant , ρ 0 = constant . ( 2 ) 

In what follows ξ → is the Lagrangian displacement. In the present subsection

the background is static and uniform. As a consequence solutions can be 

obtained in the form of plane harmonic waves and ξ → is written 

ξ → ( r → ; t ) = ξ ^ → exp ( i ( k → . r → - ω t ) ) = ξ ^ → exp ( i ( k x x + k y y 

+ k z z - ω t ) ) . ( 3 ) 

Here ξ ^ → is the constant amplitude of ξ → , k → = k x 1 → x + k y 1 → y + k

z 1 → z is the wave vector, and ω is the frequency of the wave. In what 

follows the hat on ξ → will be dropped. Since the constant magnetic field 

defines a preferred direction a clever choice of dependent wave variables is 

X, Y, Z defined as 

k z ξ z = X = displacement parallel to B → 0 , ∇ · ξ → = i k → · ξ → = i Y = 

compression , ( ∇ × ξ → ) z = i ( k → × ξ → ) z = i Z = component of vorticity 

parallel to B → 0 . ( 4 ) 

X, Y, Z are dimensionless quantities and allow us to obtain an elegant 

version of the governing equations. In terms of these variables the equations

for linear ideal MHD waves can be written as 

ω 2 X - k z 2 v S 2 Y = 0 , k 2 v A 2 X + ( ω 2 - k 2 ( v A 2 + v S 2 ) ) Y = 0 , 

( ω 2 - ω A 2 ) Z = 0 . ( 5 ) 

v A , v S are the Alfvén velocity and the velocity of sound. They are defined 

by 
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v A 2 = B 0 2 μ ρ 0 , v S 2 = γ p 0 ρ 0 . ( 6 ) 

ω A is the local Alfvén frequency. It is defined as 

ω A 2 = ( k → · B → ) 2 μ ρ = k z 2 v A 2 = k ∥ 2 v A 2 . ( 7 ) 

In a uniform plasma v A , v S , ω A are constant. In a non-uniform plasma 

these quantities depend on position. 

The system (5) consists of two uncoupled subsets of equations. The first 

subset is the third equation for the variable Z . The second subset contains 

the wave variables ξ z and Y . The first type of MHD waves are characterized 

by 

Y = 0 , Z ≠ 0 , ξ z = 0 , ω 2 = ω A 2 . ( 8 ) 

They are the classic Alfvén waves. The eigenfrequencies associated with the 

Alfvén waves (8) are infinitely degenerate as they only depend on the 

parallel component of the wave vector k → . Alfvén waves do not cause 

compression and have no component of the displacement parallel to the 

magnetic field. They are the only waves that propagate parallel vorticity in a 

uniform plasma of infinite extent. The only restoring force is the magnetic 

tension force. Note also that Alfvén waves in a uniform plasma of infinite 

extent exist for any wave vector k → = ( k x , k y , k z ) . 

The displacement ξ → for Alfvén waves is 

ξ → A = ( - k y k x 1 → x + 1 → y ) ξ y = ( 1 → x - k x k y 1 → y ) ξ x . ( 9 ) 
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For k y = 0 we obtain the popular result ξ → A = ξ y 1 → y . These y - 

independent Alfvén waves are a special case. In the cylindrical case k y = 0 

and k y ≠ 0 correspond to respectively axisymmetric waves with m = 0 and 

to non-axisymmetric waves with m ≠ 0 with m the azimuthal wave number. 

For a wave vector with both horizontal components of the wave vector 

different from zero both horizontal components of the displacement vector 

are non-zero. Let us now keep k y ≠ 0, k z ≠ 0 and mimic a situation with 

non-uniformity in the x - direction and a resonant condition where lim k x → 

+∞ so that ∣ k y ∣ ≪ ∣ k x ∣, ∣ k z ∣ ≪ ∣ k x ∣. Find then 

∣ ξ y ∣ ∣ ξ x ∣ = ∣ k x ∣ ∣ k y ∣ ≫ 1 , ξ → A ≈ ξ y 1 → y . ( 10 ) 

The motion in the Alfvén wave is predominantly in the y - direction and 

rapidly varying in the x - direction. The displacement (10) is not y - 

independent because of the factor exp( ik y y ) with k y ≠ 0. The ≈ sign 

means that the two components (ξ x , ξ y ) are non-zero but ξ y is far larger in

absolute value than ξ x . The two components are needed to satisfy the 

incompressibility condition. 

For a general wave vector k → = ( k x , k y , k z ) t the three components of 

vorticity ∇ × ξ → are non-zero. In addition to the parallel component ( ∇ × ξ 

→ ) z also the components in planes normal to B → 0 are non-zero: 

( ∇ × ξ → ) z = i ( k x ξ y - k y ξ x ) , ( ∇ × ξ → ) x = - i k z ξ y , ( ∇ × ξ → ) y = 

i k z ξ x , ξ x = - k y k x ξ y . ( 11 ) 
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For our later discussion on resonant Alfvén waves it is instructive to look at 

the components of vorticity ∇ × ξ → under conditions that mimic resonant 

behavior, i. e., when ∣ k y ∣ ≪ ∣ k x ∣, ∣ k z ∣ ≪ ∣ k x ∣ and find that 

∣ ( ∇ × ξ → ) z ∣ ∣ ( ∇ × ξ → ) x ∣ ≈ ∣ k x ∣ ∣ k z ∣ ≫ 1 , ∣ ( ∇ × ξ → ) z ∣ ∣ ( ∇ × 

ξ → ) y ∣ ≈ ∣ k x ∣ ∣ k z ∣ ∣ k x ∣ ∣ k y ∣ ≫ 1 . 

Hence 

∣ ( ∇ × ξ → ) y ∣ ≪ ∣ ( ∇ × ξ → ) x ∣ ≪ ∣ ( ∇ × ξ → ) z ∣ , 

so that 

∇ × ξ → ≈ ( ∇ × ξ → ) z 1 → z ≈ i k x ξ y 1 → z . ( 12 ) 

Here also the ≈ sign means that the three components ( ∇ × ξ → ) are non-

zero but the parallel component is far larger in absolute value than the two 

horizontal components. 

The second class of MHD waves corresponds to 

Y ≠ 0 , Z = 0 , ξ z = ξ ∥ ≠ 0 . ( 13 ) 

They are the magneto-sonic waves. They cause compression but do not 

propagate parallel vorticity. However, they cause horizontal vorticity. Their 

displacement has a component parallel to the magnetic field that is driven 

by the magnetic pressure force. The dispersion relation is 

( ω 2 ) 2 - k 2 ( v S 2 + v A 2 ) ω 2 + k z 2 k 2 v S 2 v A 2 = 0 . ( 14 ) 

The well-known solutions for the eigenfrequencies are 
https://assignbuster.com/mixed-properties-of-mhd-waves-in-non-uniform-
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ω 2 = ω s l , f 2 = k 2 ( v S 2 + v A 2 ) 2 { 1 ± ( 1 - 4 ω C 2 k 2 ( v S 2 + v A 2

) ) 1 / 2 } . ( 15 ) 

k 2 = k x 2 + k y 2 + k z 2 , ω C , and v C are the cusp frequency, and the 

cusp velocity. 

ω C 2 = v S 2 v S 2 + v A 2 ω A 2 = k ∣ ∣ 2 v C 2 = k z 2 v C 2 , v C 2 = v S 2 

v A 2 v S 2 + v A 2 . ( 16 ) 

In Equation (15) “ sl” corresponds to the minus sign, and “ f” to the plus sign.

The corresponding waves are the slow and fast magneto-sonic waves. The 

frequencies of the magneto-sonic waves depend on the three components (

k x , k y , k z ) of the wave vector k → . They depend in the same way on k x 

and k y because of isotropy in the planes normal to B → 0 . It is instructive to 

consider the variation of ω s l , f 2 as function of k x for fixed values of ( k y , 

k z ). The cut-off frequencies ω I , ω II are defined as 

ω I 2 = ω s l 2 ( k x = 0 , k y , k z ) , ω I I 2 = ω f 2 ( k x = 0 , k y , k z ) . ( 17 )

Also 

lim k x → ∞ ω s l 2 = ω C 2 , lim k x → ∞ ω f 2 = ∞ ( 18 ) 

The cut-off frequencies ω I , ω II and the characteristic frequencies ω A , ω C 

obey the sequence of inequalities 

ω C 2 ≤ ω s l 2 ≤ ω I 2 ≤ ω A 2 ≤ ω I I 2 ≤ ω f 2 < + ∞ . ( 19 ) 

Hence the spectrum of linear motions of a uniform plasma of infinite extent 

can be divided in a slow subspectrum ]ω C , ω I ], a degenerate Alfvén point 
https://assignbuster.com/mixed-properties-of-mhd-waves-in-non-uniform-
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spectrum ω A and a fast subspectrum [ω II , +∞[. The first equality in (18) 

means that ω C is an accumulation point of the slow subspectrum. 

The magneto-sonic waves are driven by tension and pressure forces and 

cause variations in density and pressure and horizontal vorticity. 

The solutions for the eigenfunctions are 

ξ → s l , f = ( 1 → x + k y k x 1 → y + ω s l , f 2 - k 2 v A 2 ω s l , f 2 k z k x 1 

→ z ) ξ x , ( 20 ) 

or equivalently, 

ξ → s l , f = ( ω s l , f 2 ω s l , f 2 - k 2 v A 2 k x k z 1 → x + ω s l , f 2 ω s l , f 2

- k 2 v A 2 k y k z 1 → y + 1 → z ) ξ z . ( 21 ) 

The popular view is that the horizontal motion (ξ x , ξ y ) is the dominant 

motion for fast waves while the parallel motion ξ z is the dominant motion for

slow waves. In order to point out that this is not the general rule, ξ x is used 

as the measuring unit in (20) and ξ z in (21). It is straightforward to show 

that in general the parallel component in (20) is not small compared to the 

horizontal components, and similarly that the horizontal components in (21) 

are not per se much smaller than the parallel component. However, for 

strong magnetic fields, i. e., v A ≫ v S it can be shown that 

ξ → f ≈ ( 1 → x + k y k x 1 → y ) ξ x ; ξ → s l ≈ ξ z 1 → z . ( 22 ) 

The popular view corresponds to the limiting case of a strong field. 

https://assignbuster.com/mixed-properties-of-mhd-waves-in-non-uniform-
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The parallel component of vorticity ( ∇ × ξ → ) z = i Z is of course zero. 

However, the horizontal components are non-zero 

∇ × ξ → = - i k z k 2 v A 2 ω s l , f 2 ξ x ( k y k x 1 → x - 1 → y ) . ( 23 ) 

For k y = 0 the expressions (20) for the displacement ξ → and (23) for 

vorticity ∇ × ξ → can be simplified to 

ξ → s l , f = ( 1 → x + ω s l , f 2 - k 2 v A 2 ω s l , f 2 k z k x 1 → z ) ξ x , ∇ × ξ 

→ = i k z k 2 v A 2 ω s l , f 2 ξ x 1 → y . ( 24 ) 

Keep k y ≠ 0, k z ≠ 0 and finite and mimic a situation with non-uniformity in 

the x - direction and a turning point where k x = 0 and find 

ξ → s l , f = ( ω I , I I 2 ω I , I I 2 - k 2 v A 2 k y k z 1 → y + 1 → z ) ξ z . ( 25 ) 

In summary for a uniform plasma of infinite extent the division is clear. The 

equation for vorticity is uncoupled from the equations for compression and 

parallel displacement. The waves have either parallel vorticity and no 

compression and no parallel displacement, these are the Alfvén waves, or 

they have compression and parallel displacement and no parallel vorticity, 

they are magneto-sonic waves. There are no waves with compression and 

parallel vorticity at the same time. There is no mixing of properties. 

For a pressureless plasma with 

v S 2 = 0 , ( 26 ) 

the solutions for the magnetosonic waves are 

https://assignbuster.com/mixed-properties-of-mhd-waves-in-non-uniform-
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ω C 2 = 0 , ω s l 2 = 0 , ω f 2 = k 2 v A 2 , ξ z = 0 , ξ → f = ( 1 → x + k y k x 1

→ y ) ξ x , ∇ × ξ → = - i k z ξ x ( k y k x 1 → x - 1 → y ) . ( 27 ) 

In this situation there are no slow waves and the fast magneto-sonic waves 

have no parallel motions. The parallel motions are driven by the gradient of 

plasma pressure and here plasma pressure vanishes by assumption. The 

absence of slow waves and of parallel motions is a general result for a 

pressureless plasma. In what follows, no particular attention will be devoted 

to pressureless plasmas. The equations for MHD waves for a pressureless 

plasma are easily obtained by putting v S 2 = 0 in the general equations. 

3. Mixed Properties in Non-Uniform Plasmas 
The aim of the present section is to show that MHD waves in a non-uniform 

plasma have mixed properties. In general they propagate compression and 

parallel vorticity at the same time. The phenomenon of mixed properties 

follows from the fact that the equations that describe the linear motions are 

coupled, unlike for the case of a uniform plasma of infinite extent. In 

particular the focus is on MHD waves on 1-D cylindrical plasma columns. The 

equilibrium model is a straight cylindrical plasma column of radius R in static

equilibrium. In what follows we use cylindrical coordinates r , φ, z . The 

magnetic field has both an axial and an azimuthal component 

B 0 → = B z , 0 1 → z + B φ , 0 1 → φ . ( 28 ) 

The equilibrium density ρ 0 ( r ), equilibrium pressure p 0 ( r ), and the 

components of the equilibrium magnetic field B z , 0 ( r ), B φ, 0 ( r ) are 
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functions of r or constant. The equilibrium quantities satisfy the equation of 

static equilibrium 

d d r ( p 0 + B 0 2 2 μ ) = - B φ , 0 2 μ r , B 0 2 = B φ , 0 2 + B z , 0 2 . ( 29 ) 

In a nonuniform plasma v S 2 , v A 2 , ω A 2 , and ω C 2 are functions of 

position. In what follows f ′ and δ f denote respectively the Eulerian and 

Lagrangian variation of a quantity f . In linear theory they are related as 

δ f = f ′ + d f 0 d r ξ r , ( 30 ) 

with f 0 the equilibrium value of f . In the following equations P ′ = p ′ + B 0 →

· B ′ → / μ is the Eulerian perturbation of total pressure; p ′ is the Eulerian 

perturbation of plasma pressure. ξ → is the Lagrangian displacement. 

We use the mixed field line / magnetic surface triad ( b → , n → , π → ) 

defined by Goedbloed et al. (2010) in their Equations (17. 23). In the present 

case of a straight cylindrical flux tube with the equilibrium magnetic field B 0

→ defined in the Equation (28) 

n → = 1 → r , b → = 1 → B = 1 → ∥ , π → = 1 → ⊥ , 

with 1 → ∥ , 1 → ⊥ the unit vectors in the magnetic surfaces respectively 

parallel and perpendicular to the magnetic field lines. 

ξ r is the radial component of Lagrangian displacement and ξ ∥ , ξ ⊥ are the 

projections of the Lagrangian displacement in the magnetic surfaces parallel 

and perpendicular to the magnetic field lines: 

ξ ⊥ = ( ξ φ B z , 0 - ξ z B φ , 0 ) / B , ξ ∥ = ξ → · B 0 → / B 0 . ( 31 ) 
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Since the equilibrium quantities are independent of φ and z the wave 

variables can be put proportional to the exponential factor exp[ i ( mφ + k z z

)] with m, k z the azimuthal and axial wave numbers, m is an integer. For 

example, for the Lagrangian displacement we write 

ξ → ( r → ; t ) = ξ ^ → ( r ) exp ( i ( m φ + k z z - ω t ) ) . ( 32 ) 

ξ ^ → ( r ) is the radially varying amplitude of ξ → . In what follows the hat on

ξ → and on the other wave variables will be omitted. It is convenient to 

introduce the wave vector k → = ( 0 , m / r , k z ) . 

The linear MHD waves can be described by two ordinary differential 

equations for ξ r and P ′ (see e. g., Appert et al., 1974 ; Sakurai et al., 1991b ;

Goossens et al., 1992 , 1995 ) 

D d ( r ξ r ) d r = C 1 r ξ r - C 2 r P ′ , D d P ′ d r = C 3 ξ r - C 1 P ′ . ( 33 ) 

The coefficient functions D, C 1 , C 2 , C 3 are given by 

D = ρ 0 ( v S 2 + v A 2 ) ( ω 2 - ω A 2 ) ( ω 2 - ω C 2 ) , C 1 = 2 μ r B φ , 0 2 ω

4 - ( v S 2 + V A 2 ) ( ω 2 - ω C 2 ) 2 m f B μ r 2 B φ , 0 , C 2 = ω 4 - ( v S 2 + 

v A 2 ) ( ω 2 - ω C 2 ) ( m 2 r 2 + k z 2 ) = ( ω 2 - ω I 2 ) ( ω 2 - ω I I 2 ) , C 3 

= D [ ρ 0 ( ω 2 - ω A 2 ) + 2 B φ , 0 μ d d r ( B φ , 0 r ) ] + 4 ω 4 B φ , 0 4 μ 2 r

2 - 4 ρ 0 ( v S 2 + v A 2 ) ( ω 2 - ω C 2 ) ω A 2 B φ , 0 2 μ r 2 . ( 34 ) 

v A and v S are the Alfvén speed and the speed of sound as before and are 

defined in Equation (6). In a non-uniform plasma they are functions of 

position. The quantities f B and g B are defined as 
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f B = k → · B 0 → = k z B z , 0 + m B φ , 0 r , g B = ( k → × B → 0 ) 1 → r = m 

B z , 0 r - k z B φ , 0 . ( 35 ) 

The frequencies ω A and ω C are the local Alfvén frequency and the local 

cusp frequency as before. They are defined for the planar case in Equation 

(7). Here in the cylindrical case their squares are defined as 

ω A 2 = f B 2 μ ρ 0 = ( k z B z , 0 + m r B φ , 0 ) 2 μ ρ 0 , ω C 2 = v S 2 v S 2 

+ v A 2 ω A 2 . ( 36 ) 

Note that ω A and ω C are functions of position. For a given set of wave 

numbers ( m, k z ) ω A and ω C map out two ranges of frequencies known as 

the Alfvén continuum and the cusp continuum. The frequencies ω I , ω II are 

defined as 

ω I , I I 2 = 1 2 ( m 2 r 2 + k z 2 ) ( v S 2 + v A 2 ) { 1 ± [ 1 - 4 ω C 2 ( m 2 r 2

+ k z 2 ) ( v S 2 + v A 2 ) ] 1 / 2 } . ( 37 ) 

They are the cylindrical analogues of the Cartesian cut-off frequencies 

defined in (17). Here they are not cut-off frequencies but rather frequencies 

that restrict the Sturmian or anti-Sturmian behavior of the spectrum as 

explained by Goedbloed (1975 , 1983 ). 

To emphasize that parallel motions are solely driven by the gradient plasma 

pressure force, the parallel component of the equation of motion is written 

as 

ρ 0 ω 2 ξ ∥ = i f B B 0 δ p . ( 38 ) 
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δ p is the Lagrangian variation of plasma pressure. 

For the discussion of the mixed properties it is necessary to look at the wave 

variables ξ ⊥ , ξ ∥ , ∇ · ξ → and ( ∇ × ξ → ) . They are given by expressions in 

ξ r and P ′ and their derivatives. Algebraic expressions for ξ ⊥ , ξ ∥ , ∇ · ξ → 

can be found in e. g., Sakurai et al. (1991b) 

ρ 0 ( ω 2 - ω A 2 ) ξ ⊥ = i B 0 C A , ρ 0 ( ω 2 - ω C 2 ) ξ ∥ = i f B B 0 v S 2 v S 

2 + v A 2 C S , ∇ · ξ → = - ω 2 ρ 0 ( v S 2 + v A 2 ) ( ω 2 - ω C 2 ) C S . ( 39 ) 

The coupling functions are defined as (see e. g., Sakurai et al., 1991b ) 

C A = g B P ′ - 2 f B B φ , 0 B z , 0 μ r ξ r , C S = P ′ - 2 B φ , 0 2 μ r ξ r . ( 40 ) 

They are linear combinations of P ′ and ξ r . The coefficients of ξ r in C A and C

S vanish when the equilibrium magnetic field is straight B φ, 0 = 0. C A 

depends on the azimuthal wave number m and the longitudinal wave 

number k z . C S on the other hand is independent of the wave numbers ( m, 

k z ). The coupling functions play an essential role for the mixing properties 

of MHD waves and for resonant absorption. They are called coupling 

functions for the good reason that they couple the differential equations (33)

for ξ r and P ′ to the expressions for all of the remaining wave variables ξ ⊥ , 

ξ ∥ , ∇ · ξ → , ( ∇ × ξ → ) . First they couple the differential equations for ξ r 

and P ′ to the algebraic equations (39) for ξ ⊥ , ξ ∥ , ∇ · ξ → . When C A ≠ 0 

the first equation of (39) implies that ξ ⊥ ≠ 0. Similarly when C S ≠ 0 the 

second and third equation of (39) imply that ∇ · ξ → ≠ 0 . When in addition to

C S ≠ 0 also v S ≠ 0 it follows that ξ ∥ ≠ 0. 
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Let us now consider ( ∇ × ξ → ) . In section 2 it was pointed out that a 

division of linear waves can be based on compression, parallel displacement 

and parallel vorticity. A characterization based on the components (ξ x , ξ y , 

ξ z ) is in general not possible. When we move from Cartesian geometry to 

cylindrical geometry the horizontal components (ξ x , ξ y ) are replaced by 

the components (ξ r , ξ ⊥ ) in the planes normal to B → 0 and ξ z is replaced 

by the component ξ ∥ parallel to the equilibrium magnetic field. For a uniform

plasma of infinite extent, the MHD waves could be divided into 

incompressible waves that propagate parallel vorticity, i. e., the Alfvén 

waves and waves that propagate compression and have a parallel 

displacement component i. e., the magneto-sonic waves. In what follows it 

will be shown that for a non-uniform plasma MHD waves propagate both 

compression and parallel vorticity and have non-zero radial, perpendicular 

and parallel components of displacement and vorticity. To the best of our 

knowledge expressions for the components of ( ∇ × ξ → ) are not available in

the literature. They are 

( ∇ × ξ ) r = i g B B 0 ξ ∥ - i f B B 0 ξ ⊥ , ( ∇ × ξ → ) ∥ = d ξ ⊥ d r + P ⊥ ξ ⊥ + 

P ∥ ξ ∥ - i g B B 0 ξ r , ( ∇ × ξ → ) ⊥ = - d ξ ∥ d r + Q ⊥ ξ ⊥ + Q ∥ ξ ∥ + i f B B 

0 ξ r . ( 41 ) 

Expressions for P ⊥ , P ∥ , Q ⊥ , Q ∥ are 

P ⊥ = B z , 0 B 0 1 r d d r ( r B z , 0 B 0 ) + B φ , 0 B 0 d d r ( B φ , 0 B 0 ) , P ∥

= B z , 0 B 0 1 r d d r ( r B φ , 0 B 0 ) - B φ , 0 B 0 d d r ( B z , 0 B 0 ) , Q ⊥ = B

z , 0 B 0 d d r ( B φ , 0 B 0 ) - B φ , 0 B 0 1 r d d r ( r B z , 0 B 0 ) , Q ∥ = - B z , 

0 B 0 d d r ( B z , 0 B 0 ) + B φ , 0 B 0 1 r d d r ( r B φ , 0 B 0 ) . 
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The Equations (41) show that the components of ( ∇ × ξ → ) can be 

expressed in terms of (ξ r , ξ ⊥ , ξ ∥ ). Since ξ ⊥ , ξ ∥ are expressed in terms of 

ξ r and P ′ it follows that also the components of ( ∇ × ξ → ) can be expressed

in terms of ξ r and P ′. When (ξ r , ξ ⊥ , ξ ∥ ) are non-zero, the components of 

vorticity are in general also non-zero. All of the wave variables are coupled. 

The MHD waves have mixed properties, they propagate both compression 

and parallel vorticity and have non-zero radial, perpendicular and parallel 

components of displacement and vorticity. In general all wave variables are 

non-zero. A situation in which a subset of the wave variables is not coupled 

to the other wave variables is an exception. Such a situation will appear for 

axi-symmetric motions in the presence of a straight field. The clear division 

into Alfvén waves and magneto-sonic waves that exists for a uniform plasma

of infinite extent does not any longer hold. 

Hence in general for linear MHD waves on a non-uniform plasma 

ξ r ≠ 0 , P ′ ≠ 0 , ξ ⊥ ≠ 0 , ξ ∥ ≠ 0 , ∇ · ξ → ≠ 0 , ( ∇ × ξ → ) ≠ 0 . ( 42 ) 

Let us consider the special case of axi-symmetric motions with m = 0. The 

expressions for f B , g B , C A , C S can be simplified to 

f B = k z B z , 0 , g B = - k z B φ , 0 , C A = - k z B φ , 0 { P ′ + 2 B z , 0 2 ξ r μ

r } , C S = P ′ - 2 B φ , 0 2 μ r ξ r . ( 43 ) 

For a twisted magnetic field with both a longitudinal component B z , 0 and a 

non-zero azimuthal component B φ, 0 , the coupling functions C A and C S are 

non-zero. This implies that the preceding analysis on mixed properties also 

applies to axi-symmetric motions. The axi-symmetric motions propagate 
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vorticity and compression. The situation is different when the magnetic field 

is straight. 

Since C A and C S are functions of position the coupling of the equations 

depends on position and so does the strength of the mixing of the wave 

properties. For example a wave can start off as a predominantly fast wave, 

change into a wave that has both fast and Alfvén properties and turn into a 

predominantly Alfvénic wave. MHD waves have mixed properties and have 

different appearances in different parts of the plasma because of the 

inhomogeneity of the plasma. This phenomenon was discussed by Goossens 

et al. (2002b) , Goossens (2008) , and Goossens et al. (2011 , 2012 , 2014) . 

Waves with mixed properties are also referred to as coupled MHD waves (

Pascoe et al., 2010 , 2011 ). This is a rather strange name as it seems to 

suggest that there are two or more waves involved. 

Let us now focus on MHD waves in the presence of a straight field. For a 

straight field ( B φ, 0 = 0) the magnetic surfaces are cylinders: r = constant, 

and the φ- and z - directions are the directions in the magnetic surfaces 

respectively perpendicular and parallel to the magnetic field lines. The r - 

direction is normal to the magnetic surfaces. Hence ξ r is associated with 

motions normal or across magnetic surfaces; ξ ∥ = ξ z are motions along the 

magnetic field lines and ξ ⊥ = ξ φ are motions in the magnetic surfaces 

perpendicular to the magnetic field lines. For a straight field the expressions 

for f B , g B , C A , C S are simplified to 

f B = k z B z , 0 , g B = m r B z , 0 , C A = g B P ′ = m r B z , 0 P ′ , C S = P ′ . (

44 ) 
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The coupling functions C A , C S only contain P ′. The coefficients of ξ r in C A 

and C S vanish when B φ, 0 = 0. Hence the coupling of the waves variables is 

solely due to P ′ as will become clear in what follows. As far as the wave 

numbers ( m, k z ) are concerned, C A no longer depends on k z , only on m . 

The differential equations (33) for ξ r and P ′ and the algebraic equations for ξ

⊥ , ξ ∥ , ∇ · ξ → (39) are now 

D d ( r ξ r ) d r = - C 2 r P ′ , d P ′ d r = ρ 0 ( ω 2 - ω A 2 ) ξ r , ρ 0 ( ω 2 - ω A 

2 ) ξ φ = i m r P ′ , ρ 0 ( ω 2 - ω C 2 ) ξ z = i k z v S 2 v S 2 + v A 2 P ′ , ρ 0 ω 

2 ξ z = i k z δ p , ∇ · ξ → = - ω 2 P ′ ρ 0 ( v S 2 + v A 2 ) ( ω 2 - ω C 2 ) . ( 45 ) 

Use now (41) and note that for a straight field 

P ⊥ = 1 r , P ∥ = 0 , Q ⊥ = 0 , Q ∥ = 0 , 

to obtain 

( ∇ × ξ ) r = i ( m r ξ z - k z ξ φ ) , ( ∇ × ξ ) φ = - d ξ z d r + i k z ξ r , ( ∇ × ξ ) 

z = d ξ φ d r + ξ φ r - i m r ξ r . ( 46 ) 

Equations (45) and (46) govern the MHD waves on a non-uniform straight 

cylindrical plasma column with a straight magnetic field. There is a natural 

subdivision between, respectively, axi-symmetric motions with m = 0 and 

non-axisymmetric motions with m ≠ 0. The reason being that the equation 

for ξ φ for m = 0 is decoupled from the remaining equations. Let us first focus

on axi-symmetric motions with m = 0. 

C A = 0 , C S = P ′ . ( 47 ) 
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The equation for ξ ⊥ = ξ φ is decoupled from the remaining equations 

ρ 0 ( ω 2 - ω A 2 ) ξ φ = 0 . ( 48 ) 

Equation (48) can be satisfied in two ways. First of all by choosing 

ω 2 = ω A 2 , ξ φ ≠ 0 . ( 49 ) 

The second choice is 

ω 2 ≠ ω A 2 , ξ φ = 0 . ( 50 ) 

The solutions given in (49) and (50) correspond respectively to the axi-

symmetric Alfvén waves and the sausage magneto-sonic waves. The axi-

symmetric MHD waves are decoupled in sausage magneto-sonic waves and 

axi-symmetric Alfvén waves. The solutions for the axi-symmetric magneto-

sonic waves are 

P ′ ≠ 0 , ξ r ≠ 0 , ξ z ≠ 0 , ξ φ = 0 , ∇ · ξ → = - ω 2 P ′ ρ 0 ( v S 2 + v A 2 ) ( ω 

2 - ω C 2 ) ≠ 0 , ( ∇ × ξ → ) r = 0 , ( ∇ × ξ → ) z = 0 . ( ∇ × ξ → ) φ = - i k z d d

r { v S 2 v A 2 + v S 2 1 ρ 0 ( ω 2 - ω C 2 ) } P ′ + i k z ω 2 ρ 0 ( ω 2 - ω A 2 ) 

( ω 2 - ω C 2 ) v A 2 v A 2 + v S 2 d P ′ d r . ( 51 ) 

The solutions for the axi-symmetric Alfvén waves are 

P ′ = 0 , ξ r = 0 , ξ z = 0 , ξ φ ≠ 0 , ∇ · ξ → = 0 , ( ∇ × ξ → ) r = - i k z ξ φ , ( ∇ 

× ξ → ) φ = 0 , ( ∇ × ξ → ) z = 1 r d d r ( r ξ φ ) . ( 52 ) 

For an axi-symmetric non-uniform 1-dimensional cylindrical plasma this is 

the only case where pure Alfvén waves show up in the analysis. Each 
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magnetic surface oscillates with its own local Alfvén frequency. In a twisted 

magnetic field, C A ≠ 0 for m = 0 so that the equations are coupled and the 

corresponding MHD waves have mixed magneto-acoustic and Alfvén 

properties. Also C S ≠ 0 for any azimuthal wave number m . The absence of 

pure Alfvén waves in a non-uniform 1-D cylindrical plasma for azimuthal 

wave numbers m ≠ 0 is in stark contrast to the situation for a magnetic flux 

tube with piece wise constant density and magnetic field. Spruit (1982) 

showed that solutions with ∇ · v → = 0 exist for any m . H. Spruit correctly 

identified these solutions as Alfvén waves. Flow patterns for Alfvén waves 

with m = 0 and m = 1 are shown on Figure 1 in Spruit (1982) . In addition to 

the Alfvén waves there are compressive waves. The fact that pure non-

axisymmetric Alfvén waves do not exist in a non-uniform straight plasma 

cylinder is an illustration of how the non-uniformity produces waves with 

mixed properties. 

Let us now turn back to the non-axisymmetric MHD waves with m ≠ 0. 

Actually the analysis also holds for axi-symmetric MHD waves with ξ φ = 0. 

Excluded from the analysis are the axi-symmetric Alfvén waves defined in 

(52). The Equation (46) can be rewritten as 

( ∇ × ξ ) r = k z m r v A 2 v S 2 + v A 2 ω 2 ρ 0 ( ω 2 - ω A 2 ) ( ω 2 - ω C 2 ) 

P ′ , ( ∇ × ξ ) φ = - i k z d d r { v S 2 v A 2 + v S 2 1 ρ 0 ( ω 2 - ω C 2 ) } P ′ + i

k z ω 2 ρ 0 ( ω 2 - ω A 2 ) ( ω 2 - ω C 2 ) v A 2 v A 2 + v S 2 d P ′ d r , ( ∇ × ξ )

z = - i m r 1 { ρ 0 ( ω 2 - ω A 2 ) } 2 d d r { ρ 0 ( ω 2 - ω A 2 ) } P ′ ( 53 ) 

Note that the expressions for the components of vorticity for axi-symmetric 

magneto-sonic waves can be obtained from (53) by putting m = 0. 
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Here all wave variables are coupled and all wave variables are non-zero. In 

case of a straight field, it is the non-zero Eulerian perturbation of total 

pressure P ′≠0 that produces MHD waves with mixed properties reminiscent 

of Alfvén waves and magneto-sonic waves. See also the comments by 

Hasegawa and Uberoi (1982) in their Chapter 3 on MHD waves in an 

inhomogeneous medium. 

Special interest goes to the components of ∇ × ξ. It is obvious that (∇ × ξ) r 

≠ 0 irrespective if the equilibrium is uniform or not. The same is true for (∇ ×

ξ) φ . The second term is always non-zero. The first term is non-zero for a 

non-uniform equilibrium and for a piece-wise constant density model the 

derivative results in a delta-function contribution. The parallel component (∇ 

× ξ) z is non-zero for a non-uniform equilibrium with 

d d r { ρ 0 ( ω 2 - ω A 2 ) } ( 54 ) 

different from zero. In a fully non-uniform equilibrium this condition is 

satisfied everywhere. In a piece-wise constant density model the derivative 

results in a delta-function contribution. 

Let us try to understand the cause of the vorticity. The equilibrium model is a

1-D straight cylinder with the equilibrium quantities functions of the radial 

distance r to the axis. There is no baroclinic source of vorticity since the iso-

surfaces of density and pressure coincide. Equations (41) combined with the 

expressions for P ⊥ , P ∥ , Q ⊥ , Q ∥ in principle contain all the information. 

They are rather complicated and do not allow a straightforward 

interpretation. Physical insight can be gained by considering the case of a 
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straight field. For a straight field the equation of motion in the horizontal 

planes follows from the 2nd and 3rd equations of Equation (45). 

- ρ 0 ω 2 ξ → h = - ∇ h P ′ - ρ 0 ω A 2 ξ → h . ( 55 ) 

ξ → h is the displacement in horizontal planes and ∇ h is the gradient 

operator in horizonal planes 

ξ → h = ( ξ r , ξ φ , 0 ) , ∇ h = ( d d r , i m r , 0 ) . 

The left hand side of Equation (55) is mass density times acceleration. The 

first term in the right hand side of Equation (55) is the horizontal gradient 

total pressure force; the second term is mass density times the magnetic 

tension force 

T → = - ω A 2 ξ → h , - 1 ρ 0 ∇ h P ′ = - ( ω 2 - ω A 2 ) ξ → h . 

Hence 

- 1 ρ 0 ∇ h P ′ = ω 2 - ω A 2 ω A 2 T → . ( 56 ) 

The importance of tension force compared to the horizontal pressure force 

depends on the frequency of the wave. When ω 2 ≈ ω A 2 the magnetic 

tension force dominates; when ω 2 > > ω A 2 then the the horizontal 

pressure force dominates; when ω 2 < < ω A 2 the horizontal pressure force 

and the magnetic tension force are of equal strength. For other values of ω 2 

the actual ratio has to be computed. 

From Equation (55) 
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ω 2 ( ∇ × ξ → h ) = ∇ × ( 1 ρ 0 ∇ h P ′ ) - ∇ × T → . ( 57 ) 

This shows that vorticity generated by the horizontal motions is due to the 

horizontal component of the gradient pressure force and the magnetic 

tension force. Equation (55) can be solved for ξ h as 

ξ → h = Φ ∇ h P ′ , Φ = 1 ρ 0 ( ω 2 - ω A 2 ) . ( 58 ) 

We can use Equation (56) to estimate for the relative contribution of the 

magnetic tension force and the horizontal gradient pressure force to the 

vorticity. Since ( ω 2 - ω A 2 ) / ω A 2 is non-constant in a non-uniform 

plasma we anticipate that the magnetic tension force is the dominant 

contributor to vorticity for ω 2 ≈ ω A 2 ; while the horizontal pressure force is

the dominant contributor for ω 2 > > ω A 2 . Since 

∇ × ∇ h P ′ = k z m r P ′ 1 → r + i k z d P ′ d r 1 → φ , 

the result for vorticity is 

∇ × ξ → h = d Φ d r i m r P ′ 1 → z + k z Φ { m r P ′ 1 → r + i d P ′ d r 1 → φ } . 

( 59 ) 

Equation (59) follows from Equation (53) when we remove from this equation

the contribution due to the parallel motions. 

In the same manner, we can consider the equation of motion parallel to the 

magnetic field lines. From the 4th equation of Equation (45) it follows that ξ z

is given by 

ξ z = i k z Ψ P ′ , Ψ = 1 ρ 0 ( ω 2 - ω C 2 ) v S 2 v S 2 + v A 2 . ( 60 ) 
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The result for vorticity associated with the parallel motion is then 

∇ × ( ξ z 1 → z ) = i k z { - d Ψ d r P ′ 1 → φ + Ψ ( - d P ′ d r 1 → φ + i m r P ′ 1 

→ r ) } . ( 61 ) 

This shows that vorticity generated by the parallel motions is due to the 

gradient pressure and vanishes in a pressureless plasma when v S 2 = 0 . 

The sum of ∇ × ξ → h given by Equation (59) and ∇ × ( ξ z 1 → z ) given by 

Equation (61) is equal to the result given in Equation (53). 

Equations (58) and (59) show that the horizontal motions and vorticity 

associated with horizontal motions are controlled by the function 

Φ = 1 ρ 0 ( ω 2 - ω A 2 ) . 

Conversely Equations (60) and (61) show that the parallel motions and 

vorticity associated with parallel motions are controlled by the function 

Ψ = 1 ρ 0 ( ω 2 - ω C 2 ) v S 2 v S 2 + v A 2 . 

For non-axisymmetric MHD waves on a non-uniform plasma column with a 

straight magnetic field all wave variables are non-zero and coupled. The 

coupling factor is P ′. This means that any given variable can be expressed in

terms of another wave variable. Let us see what we can do with for example 

compression and parallel vorticity. Together with the parallel displacement ξ 

z these are the two quantities that were used in section 2 to distinguish 

between Alfvén waves and magneto-sonic waves. The expressions for 

compression ∇ · ξ → and for parallel vorticity ( ∇ × ξ → ) z for non-

axisymmetric motions in a straight field can be rewritten in compact form as 
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∇ · ξ → = N C P ′ , ( ∇ × ξ → ) z = i m N V P ′ , ( 62 ) 

with 

N C = - ω 2 ρ 0 ( v S 2 + v A 2 ) ( ω 2 - ω C 2 ) , N V = - 1 r { ρ 0 ( ω 2 - ω A 2

) } 2 d d r { ρ 0 ( ω 2 - ω A 2 ) } . ( 63 ) 

The ratio of parallel vorticity to compression is 

∣ ( ∇ × ξ → ) z ∣ ∣ ∇ · ξ → ∣ = ∣ m ∣ ∣ N V ∣ ∣ N C ∣ . ( 64 ) 

In addition to the parallel component of vorticity also the components in 

horizontal planes, i. e., ( ∇ × ξ → ) φ , ( ∇ × ξ → ) r are as a rule non-zero in a 

non-uniform plasma. MHD waves turn out to be very efficient in situ 

generators of vorticity in non-uniform plasmas. This equation shows that a 

non-axisymmetric compressional motion immediately generates vorticity and

vice versa a vortical motion generates compression. It is impossible to have 

one property without the other one. MHD waves that propagate compression

but no vorticity or vice versa do not exist. The waves have always mixed 

properties. 

The cylindrical model with a straight magnetic field has a Cartesian 

analogue. The Cartesian version has a vertical magnetic field along the z - 

axis and the direction of inhomogeneity along the x - axis. The cylindrical 

case with a straight field and axi-symmetric waves with m = 0 then 

corresponds to k y = 0. For k y = 0 the Cartesian equations for the wave 

variables are decoupled in equations for the magneto-sonic waves and 

equations for Alfvén waves. However, for k y ≠ 0 the equations are coupled 
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and the MHD waves have mixed properties. Examples of this behavior can be

found in Tirry and Berghmans (1997) , Tirry et al. (1997) , De Groof and 

Goossens (2000 , 2002 ), and De Groof et al. (2002) . 

4. Resonant Absorption of MHD Waves 
Let us turn to the discussion of resonant absorption and resonant MHD 

waves. We have already pointed out that the coupling functions C A and C S 

depend on position. This implies that the strength of the mixing of the wave 

properties depends on position. MHD waves have mixed properties and have

different appearances in different parts of the plasma because of the 

inhomogeneity of the plasma. The phenomenon that the properties of MHD 

waves change as the wave propagates through a non-uniform environment 

is most clearly at work in resonant absorption. For example, in case of 

resonant Alfvén waves the MHD wave arrives at a position where it can 

behave as an almost pure Alfvén wave. Similarly, in case of resonant cusp 

waves the MHD arrives at a position where it can behave as a slow wave for 

perpendicular propagation. Resonant absorption and resonant waves have 

been discussed previously (see e. g., Goossens et al., 2011 ). We shall review

aspects related to the displacement components ξ r , ξ ⊥ , ξ ∥ , and P ′. We 

shall focus on the behavior of compression ∇ · ξ → and vorticity ∇ × ξ → for 

resonant waves. The coupling functions C A and C S play an important role 

here also. Look back at the expression for the coefficient function D (34). The

local Alfvén frequency ω A ( r ) and the local cusp frequency ω C ( r ) vary 

with position r and they map out two intervals of frequencies 

AC = [ min ω A ( r ) , max ω A ( r ) ] , SC = [ min ω C ( r ) , max ω C ( r ) ] 
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They are known as the Alfvén continuum (AC) and the slow or cusp 

continuum (SC) ( Appert et al., 1974 ; Chen and Hasegawa, 1974 ; 

Goedbloed, 1983 ). For a frequency ω either in the Alfvén continuum or the 

slow continuum the coefficient function D = 0 at the position r A where the 

frequency is equal to the local Alfvén frequency ω = ω A ( r A ) or at the 

position r C where the frequency is equal to the local cusp frequency ω = ω C

( r C ). The system of differential equations (33) have regular singular points 

at the positions r = r A and r = r C . 

Let us first consider the Alfvén continuum. For a frequency in the Alfvén 

continuum the dispersion relation for Alfvén waves is locally satisfied. Each 

magnetic surface oscillates at its own Alfvén continuum frequency. Let us 

determine the structure of the MHD wave with a frequency in the Alfvén 

continuum. The MHD waves live on [0, +∞[ in the r - direction. Solutions over

the full spatial interval can be found in Poedts et al. (1989 , 1990) , Sakurai 

et al. (1991a) , Goossens and Poedts (1992) , Tirry and Goossens (1996) , 

Ruderman and Roberts (2002) , Van Doorsselaere et al. (2004) , and Soler et 

al. (2013) . Away from the resonant surface the MHD wave can be 

predominantly magneto-sonic. During its propagation through the non-

uniform plasma the MHD wave might change in a wave that has both 

magneto-sonic and Alfvén properties. Close to and at the resonant surface 

the MHD wave is almost completely an Alfvén wave. Here we focus on the 

spatial behavior close to the singular point r = r A where ω = ω A ( r A ). We 

follow Sakurai et al. (1991b) , Goossens et al. (1992 , 1995) , and Tirry and 

Goossens (1996) . They used Frobenius-Fuchs solutions around the singular 

point r = r A where ω = ω A ( r A ) and introduced a new radial variable s = r 
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− r A . This analysis is valid in the interval [− s A , s A ] where the linear Taylor

polynomial is an accurate approximation of ω 2 - ω A 2 ( r ) : 

ω 2 - ω A 2 ≈ Δ A s , Δ A = d d r ( ω 2 - ω A 2 ) r A ( 65 ) 

The outcome of the application of the Frobenius-Fuchs method is the 

fundamental conservation law for resonant Alfvén waves 

C A ( s ) ≡ g B P ′ - 2 f B B φ , 0 B z , 0 μ r A ξ r = constant , ( 66 ) 

and the solutions for ξ r and P ′ 

ξ r ( s ) = g B ρ 0 B 0 2 Δ A C A ln ( ∣ s ∣ ) + { ξ − s < 0 ξ + s > 0 , P ′ ( s ) = 

2 f B B φ , 0 B z , 0 μ r A ρ 0 B 0 2 Δ A C A ln ( ∣ s ∣ ) + { P ′ − s < 0 P ′ + s > 

0. ( 67 ) 

All equilibrium quantities are evaluated at s = 0 ( r = r A ). The solutions for ξ

r and P ′ are characterized by a logarithmic singularity and a jump. The jump 

in a quantity Q is defined as 

[ Q ] = lim s → 0 + Q ( s ) - lim s → 0 - Q ( s ) . 

Recall the equation for ξ ⊥ 

ρ 0 ( ω 2 - ω A 2 ) ξ ⊥ = i B 0 C A . 

Hence close to s = 0 

s ξ ⊥ ≈ i C A ρ 0 B 0 Δ A . ( 68 ) 
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This means that ξ ⊥ has a 1/ s - singularity and a δ( s )- contribution. These 

singularities dominate those present in ξ r and P ′. The equation for the 

parallel component ξ ∥ is 

ρ 0 ( ω 2 - ω C 2 ) ξ ∥ = i f B B 0 v S 2 v S 2 + v A 2 C S . 

The coefficient of ξ ∥ in the left hand side of this equation is finite and non-

zero for frequencies in the Alfvén continuum. The function C S is a linear 

combination of ξ r and P ′ and can contain a logarithmic term ln(∣ s ∣) and a 

jump. This implies that ξ ∥ contains at most a logarithmic term ln(∣ s ∣) and a 

jump and is dominated by ξ ⊥ . Hence close to s = 0 we are in a situation 

that closely resembles that described in Equation (10) when we make the 

transformation 

x → r , y → ⊥ , z → ∥ ( 69 ) 

and note that 

∣ ξ ∥ ∣ ≤ ∣ ξ r ∣ ≪ ∣ ξ ⊥ , ξ → A ≈ ξ ⊥ 1 → ⊥ . ( 70 ) 

The motion (70) in the Alfvén wave is predominantly in the ⊥- direction and 

rapidly varying in the r - direction. The ≈ sign means that the three 

components (ξ ∥ , ξ r , ξ ⊥ ) are non-zero but ξ ⊥ is far larger in absolute value

than the two other components. 

Consider now Equations (41) for the components of ∇ × ξ → and identify the 

first term in the right hand side of the equation for ( ∇ × ξ → ) ∥ as the 

dominant term overall. Hence 
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( ∇ × ξ → ) ∥ ≈ d ξ ⊥ d r = d d r { 1 ρ 0 ( ω 2 - ω A 2 ) i C A B 0 } ≈ - i C A B 0

1 { ρ 0 ( ω 2 - ω A 2 ) } 2 d d r { ρ 0 ( ω 2 - ω A 2 ) } ≈ - i C A ρ 0 B 0 Δ A 1 s 

2 . ( 71 ) 

( ∇ × ξ → ) ∥ has a 1/ s 2 - singularity. The remaining components ( ∇ × ξ → ) r

and ( ∇ × ξ → ) ⊥ are non-zero and both have a 1/ s - singularity when f B ≠ 0

and Q ⊥ ≠ 0. Hence use the transformation (69) to help us to identify the 

inequalities (12) but now as 

∣ ( ∇ × ξ → ) ⊥ ∣ ≤ ∣ ( ∇ × ξ → ) r ) ∣ ≪ ∣ ( ∇ × ξ → ) ∥ ∣ , ( 72 ) 

so that 

∇ × ξ → ≈ ( ∇ × ξ → ) ∥ 1 → ∥ . ( 73 ) 

Here also the ≈ sign means that the three components ( ∇ × ξ → ) are non-

zero but the parallel component is far larger in absolute value than the two 

horizontal components. 

In summary 

lim s → 0 ∣ ξ ⊥ ∣ ∣ ξ r ∣ = + ∞ , lim s → 0 ∣ ξ ⊥ ∣ ∣ ξ ∥ ∣ = + ∞ , lim s → 0 ∣ ( ∇

× ξ → ) ∥ ∣ ∣ ( ∇ × ξ → ) r , ⊥ ∣ = + ∞ . ( 74 ) 

Hence the dominant dynamics is in the perpendicular motions. The jumps in 

ξ r and P ′ (67) are due to dissipative effects. At and in the vicinity of the 

resonant position s = 0 the resonant MHD wave has very strong Alfvén wave 

properties. Its properties match the properties derived on the basis of very 

simple principles for Alfvén waves that mimic a resonant situation in section 
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2. The resonant Alfvén wave is linked to the outside world by the coupling 

function C A . 

A comment on the case of axi-symmetric motions with m = 0. The 

expressions for f B , g B , C A , C S for axi-symmetric motions are given in (43).

In particular it was pointed out that for a twisted magnetic field with both a 

longitudinal component B z , 0 and a non-zero azimuthal component B φ, 0 the 

coupling functions C A and C S are non-zero. Hence the preceding analysis on 

resonant properties also applies to axi-symmetric motions. Resonant 

absorption of axi-symmetric motions in the Alfvén continuum was 

investigated by Giagkiozis et al. (2016) for an a non-straight magnetic field 

and in the slow continuum by Yu et al. (2017a , b) for a straight magnetic 

field. In addition, the preceding analysis for the behavior of the various 

variables can be repeated for a pressureless plasma. The additional 

simplification is that ξ ∥ = 0. The behavior of the resonant waves at and in 

the vicinity of the resonant position is to a large extent insensitive to plasma 

pressure. 

The mathematical results in (68) for ξ ⊥ and (71) for ( ∇ × ξ → ) ∥ mean that 

there are strong counterstreaming flows in the perpendicular direction at 

and close to s = 0. Of course in reality infinite values for ξ ⊥ do not occur. We

shall see that these infinite values are replaced by finite and very large 

values. This is the basis for the Kelvin-Helmholtz instability in Alfvén waves 

first investigated by Terradas et al. (2008) and subsequently studied by 

several groups (see e. g., Antolin et al., 2014 , 2015 , 2018 ). 

https://assignbuster.com/mixed-properties-of-mhd-waves-in-non-uniform-
plasmas/



 Mixed properties of mhd waves in non-uni... – Paper Example  Page 34

Let us now turn to the slow continuum. The analysis for a frequency in the 

slow continuum parallels that for Alfvén waves (see e. g., Sakurai et al., 

1991b ; Goossens and Ruderman, 1995 ). The MHD waves live on [0, ∞[ . 

Here we focus on the spatial behavior close to the singular point r = r C 

where ω = ω C ( r C ). The variable s is now defined as s = r − r C with r C the 

position where ω 2 = ω C 2 ( r C ) . This analysis is valid in the interval [− s C

, s C ] where the linear Taylor polynomial is an accurate approximation of ω 2

- ω C 2 ( r ) : 

ω 2 - ω C 2 ≈ Δ C s , Δ C = d d r ( ω 2 - ω C 2 ) r C . ( 75 ) 

The outcome is the fundamental conservation law for resonant slow waves 

C S ( s ) ≡ P ′ - 2 B φ , 0 2 ξ r μ r = constant , ( 76 ) 

and the solutions for ξ r and P ′ 

ξ r ( s ) = ω C 4 ( B 0 2 / μ ) ω A 2 Δ C C S ln ( ∣ s ∣ ) + { ξ − s < 0 ξ + s > 0 ,

P ′ ( s ) = 2 ω C 4 B φ , 0 2 r C B 0 2 ω A 2 Δ C C S ln ( ∣ s ∣ ) + { P ′ − s < 0 P 

′ + s > 0. ( 77 ) 

Recall the equation for ξ ∥ 

ρ 0 ( ω 2 - ω C 2 ) ξ ∥ = i f B B 0 v S 2 v S 2 + v A 2 C S . 

Hence close to s = 0 

s ξ ∥ = i f B B 0 ρ 0 Δ C v S 2 v S 2 + v A 2 C S . ( 78 ) 
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This means that ξ ∥ has a 1/ s - singularity and a δ( s )- contribution. These 

singularities dominate those present in ξ r and P ′. 

The equation for the perpendicular component ξ ⊥ is 

ρ 0 ( ω 2 - ω A 2 ) ξ ⊥ = i B 0 C A . 

The coefficient of ξ ⊥ in the left hand side of this equation is finite and non-

zero for frequencies in the cusp continuum. The function C A is a linear 

combination of ξ r and P ′ and can contain a logarithmic term ln(∣ s ∣) and a 

jump. This implies that ξ ⊥ contains at most a logarithmic term ln(∣ s ∣) and a

jump and is dominated by ξ ∥ . Hence close to s = 0 we are in a situation 

∣ ξ ⊥ ∣ ≤ ∣ ξ r ∣ ≪ ∣ ξ ∥ ∣ , ξ → S ≈ ξ ∥ 1 → ∥ . ( 79 ) 

The motion (79) in the slow wave is predominantly in the ∥- direction and 

rapidly varying in the r - direction. The ≈ sign means that the three 

components (ξ ∥ , ξ r , ξ ⊥ ) are non-zero but ξ ∥ is far larger in absolute value 

than the two other components. 

Recall from (39) the equation for ∇ · ξ → as 

∇ · ξ → = - ω 2 ρ 0 ( v S 2 + v A 2 ) ( ω 2 - ω C 2 ) C S 

and find that in the vicinity of s = 0 ∇ · ξ → behaves as 

s ( ∇ · ξ → ) = - ω C 2 ρ 0 Δ C ( v S 2 + v A 2 ) C S . ( 80 ) 

∇ · ξ → has a 1/ s - singularity and a δ( s )- contribution in the same way as ξ 

∥ . Consider now Equations (41) for the components of ∇ × ξ → and identify 
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the first term in the right hand side of the equation for ( ∇ × ξ → ) ⊥ as the 

dominant term overall. Hence 

( ∇ × ξ → ) ⊥ ≈ - d ξ ∥ d r = - d d r { 1 ρ 0 ( ω 2 - ω C 2 ) i f B B 0 v S 2 v S 2 

+ v A 2 C S } ≈ i f B B 0 v S 2 v S 2 + v A 2 C S 1 { ρ 0 ( ω 2 - ω C 2 ) } 2 d d 

r { ρ 0 ( ω 2 - ω C 2 ) } ≈ i f B ρ 0 B 0 Δ C v S 2 v S 2 + v A 2 C S 1 s 2 . ( 81 )

( ∇ × ξ → ) ⊥ has a 1/ s 2 -singularity. The remaining components ( ∇ × ξ → ) 

r and ( ∇ × ξ → ) ∥ are non-zero and both have a 1/ s - singularity when g B ≠ 

0 and P ∥ ≠ 0. 

∣ ( ∇ × ξ → ) ∥ ∣ ≤ ∣ ( ∇ × ξ → ) r ) ∣ ≪ ∣ ( ∇ × ξ → ) ⊥ ∣ , ( 82 ) 

so that 

∇ × ξ → ≈ ( ∇ × ξ → ) ⊥ 1 → ⊥ . ( 83 ) 

Here also the ≈ sign means that the three components ( ∇ × ξ → ) are non-

zero but the perpendicular component is far larger in absolute value than the

radial and parallel components. 

In summary 

lim s → 0 ∣ ξ ∥ ∣ ∣ ξ r ∣ = + ∞ , lim s → 0 ∣ ξ ∥ ∣ ∣ ξ ⊥ ∣ = + ∞ , lim s → 0 ∣ ( ∇ 

× ξ → ) ⊥ ∣ ∣ ( ∇ × ξ → ) r , ∥ ∣ = + ∞ . ( 84 ) 

The dominant dynamics is in the component in the magnetic surfaces and 

parallel to the magnetic field lines. In the vicinity of the resonant magnetic 

surface the wave is almost exactly a slow wave in a homogeneous plasma 

with its wave vector almost perpendicular to the magnetic field. 
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The mathematical results in (78) for ξ ∥ and (81) for ∇ × ξ → ⊥ mean that 

there are strong counterstreaming flows in the parallel direction at and close 

to s = 0. Of course in reality infinite values for ξ ⊥ do not occur. We shall see 

that these infinite values are replaced by finite and very large values. Our 

prediction is that this is the basis for the Kelvin-Helmholtz instability in slow 

resonant waves. This possible Kelvin-Helmholtz instability has not yet been 

studied. 

5. Conclusions 
Pure Alfvén waves and pure magneto-acoustic waves exist in a uniform 

plasma of infinite extent. In a non-uniform plasma the MHD waves combine 

the properties of the classic Alfvén waves and of magneto-sonic waves in a 

uniform plasma of infinite extent. The mixing of the properties is controlled 

by the coupling functions C A and C S . The general rule is that MHD waves in 

a non-uniform plasma propagate both compression and parallel vorticity and 

that the parallel, perpendicular, and radial components of displacement and 

vorticity are non-zero. Vortex motions driven by MHD waves are as far as we 

can anticipate not different from vortex motions generated by other sources.

Our analysis shows that MHD waves in non-uniform plasmas are very 

efficient in situ generators of vorticity. In a non-uniform plasma MHD waves 

can fill the whole space with vorticity. Vortex motions are expected to be 

very prominent where resonant conditions are satisfied. The signatures of 

vortex motions in the process of resonant Alfvén damping are very strong 

sheared azimuthal motions. Observational aspects of these strong sheared 

azimuthal motions and possible turbulent behavior have been investigated 

by Okamoto et al. (2015) and compared to results of numerical simulations 
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by Antolin et al. (2015) . Of course in a pressureless plasma the parallel 

component of the displacement is zero. The exception to the general rule of 

mixed properties are axi-symmetric waves in the presence of a straight 

magnetic field. The coupling functions depend on position. Hence as an MHD 

waves propagates through a non-uniform plasma its properties change. 

Resonant absorption is a clear example of this phenomenon. In case of 

resonant Alfvén waves the MHD wave arrives at a position where it behaves 

as an almost pure Alfvén wave. Similarly, in case of resonant cusp waves the

MHD arrives at a position where it behaves as a slow wave for perpendicular 

propagation. Resonant absorption for MHD waves with frequencies in the 

Alfvén / slow continuum is controlled by the coupling functions C A and C S . 

Analysis of the motions associated with the resonant Alfvén /slow waves 

shows that the resonant waves are characterized by strong shear in the 

perpendicular/parallel component of displacement with large values of the 

parallel/perpendicular component of vorticity. This strong shear causes 

violent KH-instabilities that accelerate the damping of the MHD waves and 

facilitate heating of plasma. 
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Footnotes 
1. ^ The standard definition of vorticity in fluid dynamics is ∇ × v → . Here 

the analysis uses the Lagrangian displacement ξ → and ∇ × ξ → is referred to

as vorticity. Since v → = - i ω ξ → it follows that ∇ × v → = - i ω ∇ × ξ → . ∇ · v

→ is a measure for the rate of variation of the volume of a material fluid 

element. In the present paper ∇ · ξ → is referred to as compression. 
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