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1. Introduction 
Time series models are of great significance in numerous areas of 

applications, e. g., finance, climatology, and signal processing, to name just 

a few. Central limit theorems play an important role in statistical inference. 

However, due to dependencies, it is challenging to obtain central limit 

theorems under general time series models. Moreover, from practical point 

of view, obtaining central limit theorem is not enough. It is also important to 

study how fast the convergence takes place, i. e., how far one is from the 

limiting distribution. 

A simple generalization of the classical central limit theorem is the central 

limit theorem for M -dependent sequence of random variables. That is, the 

elements in the sequence are independent, if their indices are far away from 

each other. For general time series with arbitrary dependence structure, the 

problem becomes more subtle, and it might happen that the limiting 

distribution is not Gaussian and/or that one has to use different scaling than 

the classical T , where T is the sample size. Thus, a natural approach to the 

problem is to study limiting distributions of properly scaled averages of 

stationary processes with a given autocovariance structure. What happens 

on the limit is dictated by the dependence structure of the time series. If the 

dependence is weak enough, then central limit theorem is obtained. See a 

recent book [ 1 ] for a comprehensive introduction to the topic and [ 2 ] for 

functional central limit theorem. Another option is to impose mixing 

conditions. Limit theorems for strong mixing processes are studied (e. g., [ 3 
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– 5 ]). However, specific mixing conditions are often more than difficult to 

verify. 

If we consider stationary time series models, two general classes, linear 

processes and Gaussian subordinated processes 1 , are applied extensively 

in different fields. The class of univariate linear processes consists of 

stationary processes ( z t ) t ∈ℕ of the form 

z t = ∑ j = - ∞ ∞ ϕ j ξ t - j , 

where the coefficients ϕ j satisfy some specific assumptions and (ξ j ) j ∈ℕ is a

sequence of independent and identically distributed random variables. For 

example, this class covers stationary ARMA-models with I. I. D. errors. For 

theory of such processes together with central limit theorems, we refer to 

Brockwell and Davis [ 6 ] as well as to more recent articles [ 7 , 8 ] studying 

limit theorems of linear processes. Finally, we mention [ 9 ], where Berry-

Esseen type bounds are derived for linear processes and [ 10 , 11 ], where 

estimation of the mean and the autocovariances is studied in the case of 

long-memory and heavy-tailed linear processes. 

The class of univariate Gaussian subordinated processes consists of 

stationary processes ( z t ) t ∈ℕ of the form z t = f ( X t ), where ( X t ) t ∈ℕ is a 

d -variate stationary Gaussian process and f is a given function. It is usually 

assumed that f ( X 0 ) ∈ L 2 . Central limit theorems for such time series date

back to Breuer and Major [ 12 ] and the topic has been studied extensively. 

Indeed, for Gaussian subordinated processes central and non-central limit 

theorems have been studied at least in Arcones [ 13 ], Avram and Taqqu [ 14
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], Bai and Taqqu [ 15 , 16 ], Dobrushin and Major [ 17 ], and Giraitis and 

Surgailis [ 18 ]. Motivated by real-life applications, the non-central limit 

theorems have been studied mostly in the case of long-memory processes. 

In this case one has to use stronger normalization, and the limiting 

distribution is Gaussian only if the so-called Hermite rank of the function f is 

1. More generally, in this case, the properly scaled average of z t converges 

toward a Hermite process of order k , where k is the Hermite rank of f . These

central and non-central limit theorems have been considered in statistical 

applications for long-memory processes at least in Dehling and Taqqu [ 19 ] 

(empirical process and U-statistics), Dehling et al. [ 20 ] (change point tests),

Lévy-Leduc et al. [ 21 ] (estimation of scale and autocovariances in Gaussian 

setup), and Giraitis and Taqqu [ 22 ] (Whittle estimator). 

In addition to the study of long-memory case and non-central limit theorems,

the central limit theorems for Gaussian subordinated stationary processes 

have emerged again to the center of mathematical community's interest. 

The reason behind this is that it has been observed that Stein's method and 

Malliavin calculus suit together admirably well—straightforwardly giving new 

tools to study central limit theorems for Gaussian subordinated processes. 

For recent developments on the topic, we refer to the articles [ 23 , 24 ] and 

to the monograph [ 25 ]. Also, a stronger version of the Breuer-Major 

theorem was proven in Nourdin et al. [ 26 ]. It was proven that, in addition to

the convergence in distribution, the convergence toward normal random 

variable holds even in stronger topologies, such as Kolmogorov or 

Wasserstein distance. Moreover, the authors also provided Berry-Esseen 
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type bounds in these metrics. Finally, we mention [ 27 ], where the result 

was generalized to cover non-stationary Gaussian fields. 

In this article, we consider a general class of weakly stationary time series (

z t ) t ∈ℕ . We study the asymptotic behavior of the traditional mean and 

autocovariance estimators under the assumption of equal one-dimensional 

marginal distributions 2 of ( z t ) t ∈ℕ . Our main contribution is to show that 

for any such weakly stationary time series ( z t ) t ∈ℕ with some given 

autocovariance structure and with some given equal one-dimensional 

marginal distributions, one can always construct a univariate Gaussian 

process ( X t ) t ∈ℕ and a function f such that ( f ( X t )) t ∈ℕ has, 

asymptotically, the same autocovariance structure and the same one-

dimensional marginal distributions as ( z t ) t ∈ℕ . Relying on that, we 

complement the above mentioned works on limit theorems in the case of 

Gaussian subordination. There exists a rich literature on the topic, and we 

propose to model time series directly with ( f ( X t )) t ∈ℕ . In comparison to 

the above mentioned literature, where the model is assumed to be ( f ( X t )) 

t ∈ℕ , we start with a given weakly stationary time series with equal one-

dimensional marginals, and we construct a function f and a Gaussian process

( X t ) t ∈ℕ such that ( f ( X t )) t ∈ℕ is a suitable model for ( z t ) t ∈ℕ . We 

obtain limiting normal distributions for the traditional mean and 

autocovariance estimators for any time series within our model that has 

absolutely summable autocovariance function. This corresponds to the case 

with short memory. In addition, we show that within our model, as desired, 

the function f does have Hermite rank equal to 1. Indeed, Hermite rank equal

to 1 ensures that even in the long-memory case, the limiting distribution is 
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normal. We also show that if the one-dimensional marginal distribution is 

symmetric, then the corresponding Hermite ranks for variance and 

autocovariance estimators are (essentially) equal to 2. As such, our model is 

particularly suitable for modeling long memory, in which case the exact 

knowledge on the Hermite ranks is crucially important. We compare our 

approach and results to the existing literature including comparison to the 

theory of linear processes that are covered by our model. Note that, our 

model is not limited to, but covers e. g., stationary ARMA-models. We 

observe that the assumptions that are usually posed in the literature for 

obtaining limiting normal distribution, are clearly stronger than the 

assumptions we require. For example, in the short memory case our 

assumption of summable covariance function is rather intuitive, as well as 

easily verified, compared to, e. g., complicated assumptions on the 

coefficients ϕ j of linear processes. These results highlight the applicability of 

Gaussian subordinated processes in modeling weakly stationary time series. 

The rest of the article is organized as follows. In section 2 we recall some 

basic definitions and preliminaries on Gaussian subordination. In section 3 

we introduce and discuss our model. Section 4 is devoted to the study of the 

standard mean, variance, and autocovariance estimators in the framework of

our model. In section 5 we give some concluding remarks and compare our 

approach to the existing literature. 
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2. Preliminaries 
In this section we review some basic definitions and fundamental results that

are later applied in section 3. We start by recalling the definition of weak 

stationarity. 

Definition 2. 1. Let ( z t ) t ∈ℕ be a stochastic process. Then ( z t ) t ∈ ℕ is 

weakly stationary if for all t, s ∈ ℕ, 

1. E z t = μ < ∞, 

2. E z t 2 = σ 2 < ∞ , and 

3. Cov ( z t , z s ) = r ( t − s ) for some function r . 

Definition 2. 2. We denote g ( j ) ~ f ( j ) as j → a ∈ [−∞, ∞], if lim j → ∞ g ( j ) 

f ( j ) = C for some constant C ∈ (−∞, ∞). 

Remark 2. 1. Note that sometimes in the literature the notation g ~ f means 

lim j → ∞ g ( j ) f ( j ) = 1 . For our purposes, however, we are only interested 

in the asymptotics up to a multiplicative constant, and for notational 

simplicity we allow an arbitrary (finite) constant in the limit lim j → ∞ g ( j ) f (

j ) . 

Definition 2. 3. Let ( z t ) t ∈ℕ be stationary with autocovariance function r . 

1. The process z is called short-range dependent , if 

∑ j = 1 ∞ | r ( j ) | < ∞ . 

2. The process z is called long-range dependent , if, as | j | → ∞, we have 
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r ( j ) ~ | j | 2 H - 2 ( 2. 1 ) 

for some H ∈ ( 1 2 , 1 ) . 

Remark 2. 2. The definition of long-range dependence varies in the literature,

and different generally accepted definitions are not equivalent. Here we 

have adopted the definition given in Samorodnitsky [ 28 ] (Equation 5. 15). 

Note also that Samorodnitsky [ 28 ] (Equation 5. 15) involves an additional 

slowly varying function L ( j ) on the asymptotic behavior (2. 1) of r ( j ). For 

the sake of simplicity of the presentation, we have omitted this factor in our 

definition. However, it is straightforward to check that all our results remain 

valid in the general case as well. For alternative definitions of long-range 

dependence, we refer to Samorodnitsky [ 28 ], especially the discussions on 

page 197. 

We now recall Hermite polynomials and the Hermite ranks of functions. 

The Hermite polynomials H k are defined recursively as follows: 

H 0 ( x ) = 1 , H 1 ( x ) = x , and H k + 1 ( x ) = x H k ( x ) - k H k - 1 ( x ) . 

The k th Hermite polynomial H k is clearly a polynomial of degree k . 

Moreover, it is well-known that Hermite polynomials form an orthogonal 

basis of the Hilbert space of functions f satisfying 

∫ - ∞ ∞ [ f ( x ) ] 2 e - x 2 2 d x < ∞ , 

or equivalently, E[ f ( X )] 2 < ∞, where X ~ N (0, 1). Every f that belongs to 

that Hilbert space has a Hermite decomposition 
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f ( x ) = ∑ k = 0 ∞ α k H k ( x ) , ( 2. 2 ) 

and for X ~ N (0, 1), Y ~ N (0, 1), we have that 

E [ f ( X ) f ( Y ) ] = ∑ k = 0 ∞ k ! α k 2 [ C o v ( X , Y ) ] k . ( 2. 3 ) 

Definition 2. 4 (Hermite rank). Let ( X t ) t ∈ℕ , X t = ( X t ( 1 ) , X t ( 2 ) , … , X

t ( d ) ) , be a d -dimensional stationary Gaussian process. Let f : ℝ d → ℝ, f 

( X t ) ∈ L 2 . The function f is said to have Hermite rank q with respect to X t

, ifE[( f ( X t ) −E f ( X t )) p m ( X t )] = 0 for all polynomials p m : ℝ d → ℝ that

are of degree m ≤ q − 1, and if there exists a polynomial p q of degree q 

such thatE[( f ( X t ) −E f ( X t )) p q ( X t )] ≠ 0. 

Remark 2. 3. Note that the Hermite rank of a function f is the smallest 

number q ≥ 1 such that α q ≠ 0 in decomposition (2. 2). 

Processes of form f ( X t ) are called Gaussian subordinated processes, and 

there exists a rich theory on the statistical inference for subordinated 

processes. It turns out that the Hermite rank plays a crucial role. This fact is 

already visible in the following Breuer-Major theorem [ 12 ]. 

Theorem 2. 1. [ 12 , Theorem 1] Let ( X t ) t ∈ℕ , X t = ( X t ( 1 ) , X t ( 2 ) , … ,

X t ( d ) ) , be a d-dimensional stationary Gaussian process. Assume that f : ℝ

d → ℝ, f ( X t ) ∈ L 2 , has a Hermite rank q ≥ 1. Denote 

r X k , i ( τ ) = E [ X τ ( k ) X 0 ( i ) ] . 

If 
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∑ τ = 0 ∞ | r X k , i ( τ ) | q < ∞ , ∀ k , i = 1 , 2 , … , d , 

then σ 2 = V a r [ f ( X 0 ) ] + 2 ∑ t = 1 ∞ C o v [ f ( X 0 ) , f ( X t ) ] is well-

defined and 

1 T ∑ t = 1 T [ f ( X t ) - E f ( X t ) ] → d N ( 0 , σ 2 ) , 

as T → ∞. 

A stronger version of Theorem 2. 1 was proven in a recent article [ 26 ]. It 

was shown that the convergence holds even in stronger topologies than the 

convergence in distribution, e. g., the convergence holds in Wasserstein 

distance and in Kolmogorov distance. Furthermore, applying Theorem 2. 1 of

Nourdin et al. [ 26 ], it is possible to study the rate of convergence. 

Obviously, one could apply these results in our setting as well, but for a 

general function f , the bounds are rather complicated. For an interested 

reader, we refer to Nourdin et al. [ 26 ]. It is also known [ 29 ] that, under the

additional assumption that f ( X t ) ∈ L 2 + ϵ for some ϵ > 0, a functional 

version of Theorem 2. 1 holds, i. e., 

1 T ∑ t = 1 ⌊ n T ⌋ [ f ( X t ) - E f ( X t ) ] 

converges weakly toward σ times a Brownian motion in the Skorokhod 

space. 

The following result provides a generalization into the long memory case, 

where the summability condition does not hold. For details, we refer to Bai 

and Taqqu [ 30 ] and the references therein. 
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Theorem 2. 2. Assume that f : ℝ → ℝ, f ( X t ) ∈ L 2 , has a Hermite rank q ≥ 

1, and let X be a stationary Gaussian process such that, as t → ∞, 

r X ( t ) q ~ | t | 2 H - 2 

for some H ∈ ( 1 2 , 1 ) . Then 

1 T H - 1 ∑ t = 1 T [ f ( X t ) - E f ( X t ) ] → d Z q , 

as T → ∞, where Z q is the so-called Hermite random variable of order q 

multiplied with a constant . 

Remark 2. 4. The normalization in Theorem 2. 2 stems from the fact that 

V a r ( 1 T ∑ k = 1 T [ f ( X t ) - E f ( X t ) ] ) ~ 1 T ∑ k = 1 T r X ( t ) q . 

Remark 2. 5. We stress that Z 1 is just a normal random variable, and 

consequently the only difference compared to Theorem 2. 1 is the 

normalization. However, in the corresponding functional version, the limiting 

Gaussian process is the fractional Brownian motion instead of the standard 

Brownian motion. 

3. On Modeling Weakly Stationary Time Series 
Let ( z t ) t ∈ℕ be a given weakly stationary univariate time series with an 

expected value μ = E[ z t ] and a given autocovariance function r z ( τ ) = E 

[ z τ z 0 ] - μ 2 . Without loss of generality and in order to simplify the 

presentation, we assume that μ = 0 and Var ( z t ) = 1. Assume that the one-

dimensional marginals of ( z t ) t ∈ℕ are all equal. By equal one-dimensional 

marginal distributions we mean that the distribution of z t is the same for all 
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time indices t . The corresponding one-dimensional variable is denoted by z ,

and its cumulative distribution function is denoted by F z . 

We begin with the following result stating that Gaussian subordinated 

processes can have arbitrary one-dimensional marginals. The claim is based 

on inverse sampling, and is rather widely accepted folklore in the Gaussian 

subordination literature. However, since in many textbooks the claim is 

stated only in the case of continuous distributions F z , for the sake of clarity 

we present the proof. We stress that the proof is standard, and we do not 

claim originality here. 

Proposition 3. 1. Let ( z t ) t ∈ℕ be an arbitrary process with equal square 

integrable one-dimensional marginals F z . Then there exists a function f and 

a standardized ℝ- valued Gaussian process ( X t ) t ∈ℕ such that f ( X t ) ∈ L 2 

has the same one-dimensional marginal distributions as the process ( z t ) t 

∈ℕ . In particular , f has a Hermite decomposition 

f ( x ) = ∑ j = 0 ∞ α j H j ( x ) . 

Proof . For y ∈ (0, 1), denote by 

F z - 1 ( y ) = inf x { F z ( x ) ≥ y } 

the quantile function of F z . It is well-known that if U is a uniformly 

distributed random variable on [0, 1], then F z - 1 ( U ) is distributed as z . Let

Φ denote the distribution function of the standard normal distribution. Then 

Φ( X ) is uniformly distributed, from which it follows that F z - 1 ( Φ ( X ) ) is 

distributed as z , and hence we may set f ( · ) = F z - 1 ( Φ ( · ) ) . 
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Furthermore, since z ∈ L 2 , we also have f ( X ) ∈ L 2 . From this it follows 

also that f has the Hermite decomposition. This concludes the proof. □ 

Remark 3. 1. We emphasize that we are only claiming that the one-

dimensional distributions of ( F − 1 ( ( Φ ( X t ) ) ) t ∈ ℕ are equal to the one-

dimensional distributions of ( z t ) t ∈ℕ . The multidimensional distributions 

are not necessarily the same. 

Remark 3. 2. In general, F z - 1 is only the left-inverse of F z , i. e. F z - 1 [ F z 

( y ) ] = y but F z - 1 [ F z ( y ) ] = y is not necessarily true. Thus, we cannot 

recover X from the transformation x = Φ - 1 ( F z ( z ) ) . On the other hand, if

F z is continuous and strictly increasing, then F z - 1 is a proper inverse 

function and X = Φ - 1 ( F z ( z ) ) . 

By Proposition 3. 1, for any stationary process z (with equal one-dimensional 

marginals) one can always choose f such that f ( X ) has the correct one-

dimensional distributions. As the analysis of weakly stationary processes 

boils down to the analysis of the covariance, one would like to construct a 

Gaussian process X such that, for a given sequence of coefficients α k , the 

process 

Z t = ∑ k = 1 ∞ α k H k ( X t ) 

have also the same covariance structure than ( z t ) t ∈ℕ . As Gaussian 

processes can have arbitrary covariance structures, this question can be 

rephrased whether each covariance function r z have a representation 

r z ( τ ) = ∑ k = 1 ∞ k ! α k 2 r X ( τ ) k , ( 3. 1 ) 
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where r X (τ) is arbitrary covariance function. Unfortunately, this is not the 

case as the following example shows. 

Example 3. 1. Let Z t = 1 6 H 3 ( X t ) . In order for (3. 1) to hold for arbitrary 

covariance function would require that every positive semidefinite matrix R Z

has a representation 

R Z = R X ◦ R X ◦ R X , ( 3. 2 ) 

where R X is positive semidefinite as well and ◦ denotes the Hadamard, i. e., 

element-wise, product of matrices. This clearly does not hold for general 

matrices, and it is straightforward to construct counterexamples. For 

instance, 

R Z = ( 1 b 3 0 b 3 1 b 3 0 b 3 1 ) 

with 1 4 < b < ( 1 4 ) 1 3 is positive definite, and leads to 

R X = ( 1 b 0 b 1 b 0 b 1 ) 

which is not positive definite. 

This example reveals that given the marginal distribution F z and the 

covariance r z of z , it might be that F z - 1 ( Φ ( X t ) ) does not have the 

same covariance than z . On the other hand, in many applications one is only

interested in modeling long scale behavior such as long range dependence. 

Luckily it turns out that for this purpose, F z - 1 ( Φ ( X t ) ) provides a good 

model. 
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Proposition 3. 2. Suppose that ( z t ) t ∈ℕ is a long-range dependent 

stationary process with equal one-dimensional marginals. Then there exists 

a Gaussian process and a function f such that the process Z t = f ( X t ) has 

same one-dimensional marginals and 

r Z ( t ) ~ r z ( t ) 

as t → ∞. 

Proof . Again, we set f ( · ) = F z - 1 ( Φ ( · ) ) . Then the marginals of Z are 

given by F z . Moreover, using (2. 3) we obtain 

r Z ( τ ) = ∑ k = q ∞ k ! α k 2 r X k ( τ ) , 

where q is the Hermite rank of F z - 1 ( Φ ( x ) ) . Since r z ( τ ) ~ | τ | 2 H - 2 ,

it remains to take any stationary Gaussian process that satisfies r X ( τ ) ~ | 

τ | 2 H - 2 q . Indeed, it is clear that then, in view of Definition 2. 2, we have 

r Z ( τ ) ~ r X q ( τ ) 

whenever r X k ( τ ) > 0 and converges to zero. Such Gaussian process 

clearly exists. □ 

Remark 3. 3. We can easily extend the result beyond long memory case, 

provided that the decay of r z is of certain type. Indeed, we always have r Z 

( τ ) ~ r X q ( τ ) or equivalently, [ r Z ( τ ) ] 1 q ~ r X ( τ ) as τ → ∞. While 

Example 3. 1 shows that we cannot construct such X for arbitrary covariance

function r z (τ), we note that our construction is possible for a wide range of 

covariance functions r z , including short-range dependent processes. For 
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example, this is possible if r z has exponential decay, already covering many 

interesting short-range dependent examples. 

Remark 3. 4. It is well-known that given the asymptotics of the 

autocovariance r X (τ), the term | r X ( τ ) | q determines the asymptotics of 

the autocovariance of ( f ( X t ))) t ∈ℕ [ 31 , p. 223]. We stress that here we do

the opposite; given the autocovariance r z (τ) we construct ( X t ) t ∈ℕ such 

that ( f ( X t ))) t ∈ℕ has the autocovariance function r z ( τ ) ~ | r X ( τ ) | q . 

4. On Model Calibration 
In this section we suppose that the process ( z t ) t ∈ℕ is given by 

z t = f ( X t ) . ( 4. 1 ) 

In particular, motivated by Proposition 3. 1 and Proposition 3. 2, we consider 

the case f ( x ) = F −1 (Φ( x )). 

We are interested in the mean and the autocovariance estimators given by 

m z = 1 T ∑ t = 1 T z t , 

and 

r ^ z ( τ ) = 1 T ∑ t = 1 T - τ [ z t - m z ] [ z t + τ - m z ] . 

For simplicity, we divide by T instead of T − τ. Consequently, the estimators 

r ^ z ( τ ) are only asymptotically consistent. On the other hand, in this case,

the sample autocovariance function preserves the desired property of 
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positive semidefinitiness. Obviously the asymptotic behavior of r ^ z ( τ ) is 

the same as for 

r ~ z ( τ ) = 1 T - τ ∑ t = 1 T - τ [ z t - m z ] [ z t + τ - m z ] . 

Finally, for the case μ = 0, a simpler version 

r ¯ z ( τ ) = 1 T ∑ t = 1 T - τ z t z t + τ 

is often used. If one is only interested in consistency of the estimator, the 

use of r ¯ z ( τ ) is justified by the following simple lemma which states that 

asymptotically the difference between r ^ z ( τ ) and r ¯ z ( τ ) is negligible. 

Lemma 4. 1. Assume that m z = m z ( T ) → μ in probability, as T → ∞. Then 

r ^ z ( τ ) = r ¯ z ( τ ) - [ m z ( T ) ] 2 + O p ( T - 1 ) . 

Proof . We have that 

r ^ z ( τ ) = 1 T ∑ t = 1 T - τ z t z t + τ - m z 1 T ∑ t = 1 T - τ z t - m z 1 T ∑ t 

= 1 T - τ z t + τ + m z 2 T - τ T = r ¯ z ( τ ) - m z 2 + R T , 

where 

R T = m z T ∑ t = T - τ + 1 T z t + m z T ∑ t = 1 τ z t - τ T m z 2 

for τ ≥ 1 and R T = 0 for τ = 0. Now, since ( z t ) t ∈ℕ has finite second 

moments, the both sums in R T are bounded in probability. Similarly, the last 

term is O p ( T - 1 ) , as T → ∞. □ 
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The problem with the usage of r ¯ z ( τ ) instead of r ^ z ( τ ) is in the rate of 

convergence that can play a crucial role under long memory. In order to 

study the rate of convergence (and possible limiting distributions) for 

autocovariance estimators one needs to study the Hermite rank of g ( X t , X 

t + τ ) = f ( X t ) f ( X t + τ ) which, in general, can be larger or smaller than the

rank of f . This fact is illustrated with the following simple examples. 

Example 4. 1. Let f ( x ) = x . Then f has Hermite rank 1, while [ f ( x )] 2 = x 2

has Hermite rank 2. 

Example 4. 2. Let f ( x ) = H 2 ( x ). Then f has Hermite rank 2 as well as [ f (

x )] 2 = x 4 − 2 x 2 + 1. 

Example 4. 3. Let f ( x ) = H 3 ( x ) + H 2 ( x ). Then f has Hermite rank 2, 

while [ f ( x )] 2 = x 6 + 2 x 5 − 5 x 4 − 8 x 3 + 7 x 2 + 6 x + 1 has Hermite 

rank 1. 

More generally, for an arbitrary pair ( q, p ) ∈ ℕ 2 it is straightforward to 

construct examples of f where f has rank q and f 2 has rank p . In view of 

Remark 2. 4, this means that the mean estimator m z is of order 

m z = O p ( 1 T ∑ k = 1 T r X ( t ) q ) 

while the variance estimator is of order 

r ¯ z ( 0 ) = O p ( 1 T ∑ k = 1 T r X ( t ) p ) . 

Thus, the asymptotic properties of the estimators r ^ z ( 0 ) and r ¯ z ( 0 ) 

can be very different. Similarly, one can construct examples of f where the 
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rank of f 2 is q and the (two-dimensional) rank of f ( X τ ) f ( X 0 ), for fixed τ, 

is p . Thus, even the asymptotical properties and the rate of convergence for 

variance estimator r ¯ z ( 0 ) and autocovariance r ¯ z ( τ ) can be different, 

and it is crucially important to have knowledge on the exact ranks of f ( X 0 ) 

and f ( X τ ) f ( X 0 ). This is problematic, since in practice the function f is 

usually not known. On the other hand, in our case we have f ( x ) = F −1 (Φ( x

)), where the quantile function F −1 can be estimated from the observations. 

In this case it turns out that the Hermite rank is known as well. 

Proposition 4. 1. Let F be an arbitrary distribution function with finite 

variance. Then 

f ( · ) = F - 1 ( Φ ( · ) ) 

has Hermite rank 1 . 

Proof . In order to prove the claim we have to show that 

E [ f ( X ) X ] ≠ 0 

for X ~ N (0, 1). We have 

∫ - ∞ ∞ F - 1 ( Φ ( x ) ) x e - x 2 2 d x = ∫ - ∞ 0 F - 1 ( Φ ( x ) ) x e - x 2 2 d x + 

∫ 0 ∞ F - 1 ( Φ ( x ) ) x e - x 2 2 d x = - ∫ 0 ∞ F - 1 ( Φ ( - x ) ) x e - x 2 2 d x + 

∫ 0 ∞ F - 1 ( Φ ( x ) ) x e - x 2 2 d x = ∫ 0 ∞ [ F - 1 ( Φ ( x ) ) - F - 1 ( Φ ( - x ) ) ]

x e - x 2 2 d x . 

Since F is non-decreasing, also F −1 is non-decreasing and hence 
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F - 1 ( Φ ( x ) ) - F - 1 ( Φ ( - x ) ) ≥ 0 

for all x ≥ 0. Furthermore, the inequality is strict for large enough x , giving 

E [ f ( X ) X ] = ∫ 0 ∞ [ F - 1 ( Φ ( x ) ) - F - 1 ( Φ ( - x ) ) ] x e - x 2 2 d x > 0 . 

□ 

Remark 4. 1. Hermite rank 1 makes the mean and the autocovariance 

estimators stable, and one usually obtains Gaussian limits with suitable 

normalizations. For detailed discussion on the stability in the case of Hermite

rank 1, we refer to Bai and Taqqu [ 30 ]. 

Remark 4. 2. We stress again that while z = F −1 (Φ( X )) has distribution F , 

in general it is not true that F −1 (Φ( X )) X is distributed as zX . For example, 

if z = g ( X ) with suitable g the distribution of g ( X ) X is not the same as the

distribution of F g ( X ) - 1 ( Φ ( X ) ) X . A simple example of such case is χ 2 

(1) distribution, where g ( x ) = x 2 but F X 2 - 1 ( Φ ( x ) ) ≠ x 2 . Clearly, g (

X ) has Hermite rank 2 while F X 2 - 1 ( Φ ( x ) ) has Hermite rank 1. This fact 

highlights our proposal to model z with z = F −1 (Φ( x )) directly. It is also 

worth to note that if g ( x ) is bijective, then the distributions of F g ( X ) - 1 

( Φ ( X ) ) X and g ( X ) X are equal. 

Proposition 4. 1 allows us to study asymptotic properties of the mean 

estimator m z . Moreover, we get asymptotic properties also for variance and 

autocovariance estimators in the case of short memory processes, that are, 

in view of Remark 3. 3, also interesting in our model. 
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Theorem 4. 1. Let ( z t ) t ∈ℕ be given by 

z t = F z - 1 ( Φ ( X t ) ) 

and E z t 4 = c < ∞ . Assume further that 

∑ τ = 1 ∞ | r z ( τ ) | < ∞ . ( 4. 2 ) 

Then 

T [ m z - μ ] → N ( 0 , σ 2 ) ( 4. 3 ) 

with σ 2 = V a r ( z 0 ) + 2 ∑ τ = 1 ∞ r z ( τ ) , and for any k ≥ 0 

T [ r ^ z ( 0 ) - r z ( 0 ) , r ^ z ( 1 ) - r z ( 1 ) , … , r ^ z ( k ) - r z ( k ) ] → N ( 0 ,

Σ ) , ( 4. 4 ) 

where Σ = (Σ ij ), i, j = 0, 1, …, k is given by 

( Σ ) i j = C o v ( z 0 z i , z 0 z j ) + 2 ∑ τ = 1 ∞ C o v ( z τ z i + τ , z 0 z j ) . 

Proof . The convergence (4. 3) follows directly from Theorem 2. 1 together 

with the fact that, by Proposition 4. 1, we have r z ( t ) ~ r X ( t ). For the 

convergence (4. 4), first note that without loss of generality and for the sake 

of simplicity, we may and will assume that μ = 0 and use the estimators r ¯ z

( k ) instead. Indeed, the general case then follows easily from (4. 3), Lemma

4. 1, and the Slutsky's theorem. In order to prove (4. 4) we have to show 

that, for any n ≥ 1 and any ( α 1 , … , α n ) ∈ ℝ n , the linear combination 

T ∑ k = 0 n α k [ r ¯ z ( k ) - r z ( k ) ] , ( 4. 5 ) 

https://assignbuster.com/on-modeling-a-class-of-weakly-stationary-
processes/



 On modeling a class of weakly stationary... – Paper Example  Page 22

converges toward a Gaussian random variable. We define an n + 1-

dimensional stationary Gaussian process X ¯ t = ( X t , X t + 1 , … , X t + n ) 

and a function 

G ( X ¯ t ) = ∑ k = 0 n α k [ f ( X t ) f ( X t + k ) - r z ( k ) ] , 

where f ( · ) = F z - 1 ( Φ ( · ) ) . With this notation we have 

T ∑ k = 0 n α k [ r ¯ z ( k ) - r z ( k ) ] = 1 T ∑ t = 1 T G ( X ¯ t ) + R ( T ) , 

where 

R ( T ) = - 1 T ∑ k = 0 n α k ∑ t = T - k + 1 T z t z t + k . 

Since E z t 4 = c < ∞ , it follows from Cauchy-Schwarz inequality that G ( X 

¯ ) ∈ L 2 . Thus, assumption (4. 2) together with Theorem 2. 1 implies that 

1 T ∑ t = 1 T G ( X ¯ t ) → N ( 0 , σ 2 ) . 

For the term R ( T ), we observe that the sum 

∑ k = 0 n α k ∑ t = T - k + 1 T z t z t + k 

is bounded in L 2 , and hence R ( T ) → 0 in probability. Thus, the 

convergence of any linear combination of the form (4. 5) toward a normal 

random variable follows directly from Slutsky's theorem. Finally, the 

covariance matrix Σ is derived by considering convergence of 

T [ r ^ z ( i ) - r z ( i ) + r ^ z ( j ) - r z ( j ) ] 

together with Theorem 2. 1 and by direct computations. □ 
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In the presence of long memory, one needs to also compute the ranks of [ F 

z - 1 ( Φ ( · ) ) ] 2 (for variance estimation) and F z - 1 ( Φ ( X τ ) ) F z - 1 ( Φ 

( X 0 ) ) (for autocovariance estimation). Unfortunately, given a general F z 

these can be again arbitrary. It turns out however, that if the distribution F z 

is symmetric (around 0), then we can always compute the corresponding 

ranks. 

Recall that a distribution F is symmetric if F ( x ) = 1 − F (− x ) for all x ∈ ℝ. 

This translates into 

F - 1 ( y ) = - F - 1 ( 1 - y ) , y ∈ [ 0 , 1 ] . 

In view of the symmetry of the normal distribution, this further implies 

F - 1 ( Φ ( x ) ) = - F - 1 ( Φ ( - x ) ) . ( 4. 6 ) 

Proposition 4. 2. Let X ~ N (0, 1) and let F be an arbitrary symmetric 

distribution function with finite variance. Then; 

1. For odd numbers k ≥ 1 we have 

E [ F - 1 ( Φ ( X ) ) X k ] > 0 . 

2. For even numbers k ≥ 0 we have 

E [ F - 1 ( Φ ( X ) ) X k ] = 0 

In particular , 

f ( · ) = F - 1 ( Φ ( · ) ) 
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has Hermite rank 1 and a decomposition 

F - 1 ( Φ ( X t ) ) = ∑ k ≥ 1 α k H k ( X t ) , ( 4. 7 ) 

where, for j = 0, 1, 2, …, we have α 2 j = 0. 

Proof . Let k be fixed. Computing as in the proof of Proposition 4. 1, we get 

∫ - ∞ ∞ F - 1 ( Φ ( x ) ) x k e - x 2 2 d x = ∫ - ∞ 0 F - 1 ( Φ ( x ) ) x k e - x 2 2 d 

x + ∫ 0 ∞ F - 1 ( Φ ( x ) ) x k e - x 2 2 d x = ( - 1 ) k ∫ 0 ∞ F - 1 ( Φ ( - x ) ) x k 

e - x 2 2 d x + ∫ 0 ∞ F - 1 ( Φ ( x ) ) x k e - x 2 2 d x = ∫ 0 ∞ [ F - 1 ( Φ ( x ) ) +

( - 1 ) k F - 1 ( Φ ( - x ) ) ] x k e - x 2 2 d x . 

As in the proof of Proposition 4. 1, this shows the claim for odd numbers k . 

Similarly, the claim for even k follows from (4. 6). □ 

Proposition 4. 3. Let F z be symmetric and let τ ∈ ℤ be fixed. Then the 

Hermite rank of F z - 1 ( Φ ( X τ ) ) F z - 1 ( Φ ( X 0 ) ) is at least 2. Moreover, 

if r ( k ) = r X ( k ) is non-degenerate, i. e. for all j ∈ ℕ we have r ( m ) = r ( j ) 

for at most finitely many m ∈ ℕ, then the set 

S = { τ : F z - 1 ( Φ ( X τ ) ) F z - 1 ( Φ ( X 0 ) ) h a s r a n k a b o v e t w o } 

is finite. In particular, if r ( k ) → 0 as k → ∞, then the set S is finite. 

Proof . From 

H k ( X ) X = H k + 1 ( X ) + k H k - 1 ( X ) 

we obtain 
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f ( X 0 ) X 0 = ∑ k ≥ 1 [ α k H k + 1 ( X 0 ) + α k k H k - 1 ( X 0 ) ] = α 1 + ∑ k 

≥ 2 [ α k - 1 + ( k + 1 ) α k + 1 ] H k ( X 0 ) . 

Here we have only even terms H 2 k while f ( X t ) consists of odd terms H 2 k 

+1 , giving 

E [ f ( X t ) f ( X 0 ) X 0 ] = 0 . 

Thus, q > 1 meaning that the rank is at least two. Let us next prove that the 

set S is finite. We first note that now 

E [ f ( X t ) f ( X 0 ) X t X 0 ] = α 1 2 + ∑ k ≥ 2 [ α k - 1 + ( k + 1 ) α k + 1 ] 2 

k ! r k . 

Let τ n → ∞ be an arbitrary sequence. Since all bounded sequences have a 

convergent subsequence, we may without loss of generality assume that r (τ

n ) → r ∈ [−1, 1]. Furthermore, without loss of generality we can assume r (τ 

n ) ≠ r . We now argue by contradiction and suppose that S is not finite. 

Then, by passing to a subsequence if necessary, we can find a sequence τ n 

∈ S such that τ n → ∞ and r (τ n ) → r , r (τ n ) ≠ r . Since τ n ∈ S , the Hermite

rank of f ( X τ n ) f ( X 0 ) withE( X τ n X 0 ) = r (τ n ) → r is q > 2 for all n . This 

means that 

E [ f ( X τ n ) f ( X 0 ) X τ n X 0 ] = E [ f ( X t n ) f ( X 0 ) ] r ( τ n ) = ∑ k ≥ 1 α 

k 2 k ! r ( τ n ) k + 1 . 

However, we can regard 

g 1 ( r ) = α 1 2 + ∑ k ≥ 2 [ α k - 1 + ( k + 1 ) α k + 1 ] 2 k ! r k 
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and 

g 2 ( r ) = ∑ k ≥ 1 α k 2 k ! r k + 1 

as real-analytic functions. Consequently, since they coincides for all r (τ n ) 

converging to r , by the identity theorem we conclude that they are equal 

everywhere. In particular, this gives us 

g 1 ( 0 ) = α 1 2 = g 2 ( 0 ) = 0 

which leads to a contradiction since, by Proposition 4. 1, we have α 1 ≠ 0. 

This concludes the proof. □ 

Remark 4. 3. Note that if for some N we have r ( j ) = 0 for all j ≥ N , the 

statement is still valid while our assumption on the non-degeneracy of r is 

violated. 

Now it is straightforward to obtain the following result on the long memory 

case, analogous to Theorem 4. 1. 

Theorem 4. 2. Let ( z t ) t ∈ℕ be given by 

z t = F z - 1 ( Φ ( X t ) ) , 

where F z is symmetric and E z t 4 = c < ∞ . Assume further that z is long-

range dependent for some H ∈ ( 1 2 , 3 4 ) . Then there exists a constant σ 2 

> 0 and a positive semidefinite matrix Σ such that 

T 1 - H [ m z - μ ] → N ( 0 , σ 2 ) ( 4. 8 ) 

and, for any k ≥ 0, 
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T [ r ^ z ( 0 ) - r z ( 0 ) , r ^ z ( 1 ) - r z ( 1 ) , … , r ^ z ( k ) - r z ( k ) ] → N ( 0 ,

Σ ) . ( 4. 9 ) 

Proof . The convergence (4. 8) follows from Theorem 2. 2 and Proposition 4. 

1, and the convergence (4. 9) can be proved by following the proof of 

Theorem 4. 1 and exploiting the facts that, by Proposition 4. 3, the rank is at 

least two, and that 

∑ k = 1 ∞ r X ( t ) 2 < ∞ 

for H < 3 4 . The details are left to the reader. □ 

Remark 4. 4. We remark that here we have used the convention that zero 

vector can be viewed as N (0, Σ) distributed random variable with zero 

variance. This corresponds to the case when the ranks of r ^ z ( j ) - r z ( j ) 

are above two for all j ≤ k . Note also that, by Proposition 4. 3, we always 

obtain a non-trivial limiting distribution by choosing k large enough. 

5. Discussion 
In this article, we argued why it is advantageous to model weakly stationary 

time series with equal one-dimensional marginals by using Gaussian 

subordinated processes, especially in the case of long memory. Under our 

model, we are able to provide limit theorems for the standard mean and 

autocovariance estimators. Furthermore, even functional versions of the 

central limit theorems and Berry-Esseen type bounds in different metrics are 

available. In our modeling approach ( z t ) t ∈ℕ = ( f ( X t )) t ∈ℕ , the Hermite 

rank of the function f is equal to 1. This is especially useful in the case of 

long memory processes as the limiting distribution is normal if and only if the
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Hermite rank of f is equal to 1. For the variance and autocovariance 

estimators, we also proved that the corresponding Hermite ranks are 

(essentially) two provided that the distribution is symmetric. While in general

one can always symmetrize the distribution, one might lose essential 

information on the transformation. This can be viewed as the price to pay in 

the trade where we gain more knowledge on the Hermite ranks, allowing to 

obtain precise asymptotic results for different estimators. 

We end this paper by comparing our approach to the existing literature. 

Linear processes of the form 

z t = ∑ j = 0 ∞ ϕ j ξ t - j , 

where (ξ t ) t ∈ℤ is an independent and identically distributed sequence, are 

widely applied models for stationary time series. To obtain central limit 

theorems for the mean and the autocovariance estimators, conditions on the

coefficients (ϕ j ) j ∈ℤ are required. A sufficient condition for obtaining central 

limit theorems is 

∑ j = 0 ∞ | ϕ j | < ∞ ( 5. 1 ) 

together with E ξ t 4 < ∞ [see Theorem 7. 1. 2. and Theorem 7. 2. 1. in [ 6 ]].

As the sequence (ξ t ) t ∈ℤ is independent and identically distributed, it 

follows that the one-dimensional marginals of the process are equal. 

Moreover, it is customary to pose assumptions for (ϕ j ) j ∈ℤ giving 

exponential decay for the covariance. Consequently, such linear processes 

are covered by our modeling approach. Moreover, it is easy to see that E ξ t 

4 < ∞ implies E z t 4 < ∞ , and (5. 1) is strictly stronger than the assumption 
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of absolutely summable autocovariance function. Thus, our modeling 

approach is more flexible and requires weaker assumptions. 
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Footnotes 
1. ^ Here we adopt the terminology Gaussian subordination from the 

Gaussian literature meaning Y = f ( X ). This should not be confused with a 

Levý process that is a subordinator (with a different meaning). 

2. ^ By one-dimensional marginal distributions we refer to the distributions 

of z t for fixed time indices t . 
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