## Math unit 5

1. Solve a. $\mathrm{e}^{\wedge} .05 \mathrm{t}=16000.05 \mathrm{t}=\ln (1600) 0.05 \mathrm{t}=7.378 \mathrm{t}=7.378 / .05 \mathrm{t}$ $=147.56 b . \ln (4 x)=34 x=e^{\wedge} 3 x=e^{\wedge} 3 / 4 x=5.02 c \cdot \log 2(8-6 x)=58-6 x$ $=2^{\wedge} 58-6 x=326 x=8-32 x=-24 / 6 x=-4 d .4+5 e-x=05 e^{\wedge}(-x)=-4$ $e^{\wedge}(-x)=-4 / 5$ no solution, e cannot have a negative answer 2 . Describe the transformations on the following graph of $f(x) ? \log (x)$. State the placement of the vertical asymptote and x-intercept after the transformation. For example, vertical shift up 2 or reflected about the $x$-axis are descriptions. . $g(x)=\log (x+5)$ horizontal left shift 5 Vertical asymptote $x=-5 x$-intercept: $(-4,0)$ b. $g(x)=\log (-x)$ over the $x$-axis vertical asymptote $x=0$ no $x$-intercept 3. Students in an English class took a final exam. They took equivalent forms of the exam at monthly intervals thereafter. The average score $S(t)$, in percent, after $t$ months was found to be given by $S(t)=68-20 \log (t+1)$, t? 0. a. What was the average score when they initially took the test, $\mathrm{t}=0$ ? Round your answer to a whole percent, if necessary. $S(0)=68-20 x \log (0+1)=$ $68-20 \times 0=68 \%$ b. What was the average score after 4 months? after 24 months? Round your answers to two decimal places. $-S(4)=68-20 x \log (4+1)$ $68-20 x 0.69968-13.98=54.02-\mathrm{S}(24)=68-20 x \log (24+1)=40.0468-$ $20 \times 1.398$ 68-27. $96=40.04$ c. After what time $t$ was the average score $50 \%$ ? Round your answers to two decimal places. $50=68-20 \log (t+1)$ $20 \log (t+1)=68-50 \log (t+1)=18 / 20 t+1=10^{\wedge}(18 / 20)=7.9433 t=7$. $9433-1=6.944$.

The formula for calculating the amount of money returned for an initial deposit into a bank account or $C D$ (certificate of deposit) is given by $A=$ $P(1+r / n)^{\wedge}$ nt $A$ is the amount of the return. $P$ is the principal amount initially deposited. $r$ is the annual interest rate (expressed as a decimal). $n$ is the
number of compound periods in one year. t is the number of years. Carry all calculations to six decimal places on each intermediate step, then round the final answer to the nearest whole cent. Suppose you deposit $\$ 2,000$ for 5 years at a rate of $8 \%$. Calculate the return (A) if the bank compounds annually $(\mathrm{n}=1)$. Round your answer to the nearest whole cent. 2000(1+0. $08 / 1)^{\wedge}(1 \times 5)=2,938.66$ b. Calculate the return $(A)$ if the bank compounds quarterly $(\mathrm{n}=4)$. Round your answer to the nearest cent. 2000(1+0. $08 / 4)^{\wedge}(4 \times 5)=2,971.89 \mathrm{c}$. If a bank compounds continuously, then the formula used is rtPeA $=$ where $e$ is a constant and equals approximately 2. 7183. Calculate A with continuous compounding. Round your answer to the nearest cent. 2000(2.7183)^(0.08x5) $=2,983.66$

