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1. Introduction 
Many-particle systems not in equilibrium, such as high-temperature plasmas,

are usually subject to kinetic theory (cf., e. g., [ 1 ]). In equilibrium or 

stationary quasi-equilibrium, obeying a very large number of degrees of 

freedom, they can beneficially be treated by the probabilistic methods of 

statistical mechanics. Conventional textbook knowledge [ 2 ] tells us that, for

the micro-canonical system under consideration, it being in thermal 

exchange with a large thermal bath at temperature T ≡ β −1 (here taken in 

energy units), the probability p α of finding it in some particular energy state 

E α is proportional to the Boltzmann factor p α ∝ exp(−β E α ). The sum of all 

un-normalized probabilities of the α states is the partition function Z = ∑ α p 

α = ∑ α exp ( - β E α ) and the normalized Gibbs probability for the state α 

becomes 

P α = Z - 1 exp ( - β E α ) ( 1 ) 

The partition function Z ≡ Z (β, { V }) is a function of β and all constraining 

parameters { V }, which determine the state α-a property that enables 

calculating a number of thermodynamically interesting average quantities of 

the system. Varying the constraints { V } implies that work is done on the 

system. 

Observations in space plasma physics (for examples, see cf., [ 3 – 5 ]) as well

as in other high-temperature systems indicate that the probability 

distribution of particles (charged or neutral) in a set of energy states E α 

deviates from the classical bell (respectively gaussian) shape, frequently 

exhibiting quasi-stationary power law tails P α ∝ E α - κ for E α > β - 1 , 
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possibly cut off exponentially at large energy. Probability distributions of this 

kind of family, known as κ-distributions (introduced 1 by Olbert [ 7 ]), have 

been widely discussed in the literature (for a review see, e. g., [ 8 ], and 

references therein). In the following, we refer to them as Olbert's κ -

distributions or simply Olbert distributions . General physical arguments for 

their existence as stationary states far from thermal equilibrium were given 

(first by [ 20 , 24 ]). Direct weak turbulence calculations of plasma-electron 

momentum distributions by Hasegawa et al. ([ 11 ], in interaction with a 

photon bath) and by Yoon et al. ([ 9 , 10 ], accounting for spontaneous and 

induced emission as well as absorption of Langmuir waves) partially 

reproduced κ-distributions in the long term limit, suggesting that under 

quasi-stationary conditions non-linear equilibria can be produced with κ-

distributions being their probabilistic signature. 

2. Lorentzian Generalization 
In generalizing the classical statistical mechanics, we start from a Lorentzian 

modification of the Boltzmann factor, which leads to the Olbert probability 

distribution known as κ-distribution. 

2. 1. Boltzmann-Olbert Distribution 
In fact, the Boltzmann factor, being at the heart of Gibbs' normalized 

probability, is the large κ limit of a more general Lorentzian, the Olbert κ-

probability function 

P κ α ( E α , β ) = Z κ , r - 1 [ 1 + β E α κ ] - ( κ + r ) , lim κ → ∞ P κ α → P α ( 2

) 
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(with r = const ≠ 0), as can easily be confirmed applying l'Hospital's rule. It 

corresponds to the abovementioned experimentally and frequently 

confirmed κ-distribution. The resulting Olbert-partition function Z κ is, in 

analogy to Gibbs' partition function, defined as 

Z κ , r ( β ) = ∑ α [ 1 + β E α κ ] - ( κ + r ) ( 3 ) 

It warrants that the Olbert probabilities of states α are normalized and add 

up to ∑ α P κ α ( E α , β ) = 1 . Performing this sum requires knowledge of the

different energy states E α , which, in general, cannot be done easily. In the 

following, we show that, assuming this form, the rules of classical statistical 

mechanics can be made applicable to the Olbert-Lorentzian with only weak 

modifications. 

2. 2. Remark on Convergence 
Before proceeding, we briefly refer to the convergence of Olbert's κ-

probability distribution Equation (2). 

The Olbert probability converges for arbitrary power κ > 0. It does, however, 

for constant κ, not allow the calculation of arbitrarily high average moments, 

for instance if one is interested in fluid descriptions. In principle, at this 

stage, κ(β, E α ), being a function of temperature and/or even energy states 

E α , is not excluded; in the latter case one would, however, require that its 

dependence is weak in order to maintain the above summation procedure as

simple as possible. Such a dependence is implicit to the non-linear 

calculations of Hasegawa et al. [ 11 ] and Yoon et al. [ 9 ]. The additional 

freedom introduced by the constant r just adjusts for the mean energy in an 

ideal gas (see, e. g., [ 26 ], and references therein). In general, however, the 

https://assignbuster.com/lorentzian-entropies-and-olberts-distribution/



 Lorentzian entropies and olbert's κ - di... – Paper Example  Page 5

number of moments that can be calculated is limited. In a fluid approach, it 

requires artificially truncating the chain of moments, for instance by applying

a water-bag model for κ(β, E α ) of the kind κ = const, E α ≤ E c , and κ → ∞, E

α > E c (implicitly assumed in [ 12 ]). Truncation may be justified via 

additional assumptions on the underlying physics, like suppression of higher 

moments than heat flows and similar conditions. Physically, this may not be 

unreasonable. From a formal point of view, brute force truncation is not 

satisfactory. However, this restriction can easily be circumvented (see e. g., [

12 – 14 ]) when introducing an exponential cut-off energy β E c ≫ 1 through 

P κ α = e - E α / E c Z κ , r [ 1 + β E α κ ] - ( κ + r ) , β E c ≫ 1 ( 4 ) 

which warrants convergence of all moments for arbitrary κ > 0 [ 13 , 14 ]. 

The chain of physically interesting moments is discussed in these papers. In 

the Olbert partition function, the energy cut-off simply appears as a 

truncator 

Z κ , r = ∑ α e - E α / E c [ 1 + β E α κ ] - ( κ + r ) ( 5 ) 

not having any further effect on the determination of averages and/or any 

other thermodynamic quantities other than warranting the convergence of 

the chain of moments. The independence of the exponential cut-off on 

temperature and β guaranties that, in all derivatives or integrals with respect

to β, it appears as an energy dependent factor. An example has been given [

15 ] by application to the Cosmic Ray energy spectrum, where the cut-off is, 

for quantum physical reasons, found in the GZ-energy spectral limit. Its 

inclusion, if necessary, does not cause any principal problems. In the 
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following, we therefore suppress it in order to not unnecessarily complicate 

the expressions. 

3. Olbert-Lorentzian Statistics 
It is reasonable to assume that, given the above definition of the probability, 

ensemble averages can be calculated as linear mean values, with the 

probability P κα determining the weight each energy level contributes. This is 

the basic probability assumption. One may argue that this may not 

necessarily be true if the probability of the states are not independent. Such 

arguments have been put forward in some entropy definitions (see, e. g., [

16 ]), and some of them, like Renyi and Tsallis q -entropies (cf. [ 17 – 19 ], 

for their invention) are used in chaotic theory 2 . However, as long as there is

no need to worry about, the κ-generalization of the probabilities already 

accounts for a particular kind of internal correlations among the occupations 

of the different states. The states are physically ordered as in Boltzmann-

Gibbs theory, while the probabilities of their occupations have become not 

completely independent. In this spirit the mean energy is defined as, 

U ( β ) ≡  E  = Z κ , r - 1 ∑ α E α [ 1 + β E α κ ] - κ - r ( 6 ) 〈 〉

3. 1. Mean Energy 
In full generality, the sum can formally be done in two ways when observing 

the properties of the partition function. The first way completes the energy, 

and one easily finds that 

U ( β ) = κ β [ Z κ , r - 1 ( β ) Z κ , r ( β ) - 1 ] ( 7 ) 
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also showing the importance of having made use of the freedom of 

introducing the arbitrary constant r ≠ 0. 

A second form, resembling that of conventional statistical mechanics, takes 

advantage of the differential property 

∂ Z κ , r - 1 ∂ β = - κ + r - 1 κ Z κ , r U ( β ) ( 8 ) 

of the partition function, yielding 

U ( β ) = - κ κ + r - 1 Z κ , r - 1 Z κ , r ( ∂ log Z κ , r - 1 ∂ β ) { V } ( 9 ) 

Here, generalization to Olbert-Lorentzian distributions introduces the 

(inconvenient) partition function ratio of different indices. It again shows the 

need for the additional constant r ≠ 1, which depends on the assumptions on

an underlying model. For instance, under classical ideal gas conditions with 

continuously distributed energy states, the average thermal energy (in three 

dimensions and isotropy) is β U = 3 2 . On switching to momentumpwith E α 

→ p 2 / 2 m and integrating over momentum space, one obtains that r = 5 2 

in this particular case ([ 26 ], and elsewhere; see references therein). This is 

not necessarily true, however, for discrete energy levels E α in more general 

non-ideal or quantum conditions. There r must be chosen differently and a 

general prescription for its choice cannot be given a priori . 

Both the above forms apply to any micro-canonical κ-system. Generalization 

to canonical systems is easily done in the same way as in statistical 

mechanics (cf., e. g., [ 2 ]) via introducing the dependence on (possibly 

variable) particle number N . It requires reference to Lagrange multipliers μ 

playing the role of chemical potentials for each subsystem and transforming 
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E α → E α − μ in the probabilities and partition functions. Clearly, all μ must 

become equal in thermal equilibrium. 

The two Equations (7, 9) allow for the determination of the ratio of the 

partition functions by eliminating U (β) 

Z κ , r - 1 Z κ , r = κ + r - 1 κ + r - 1 + β ( ∂ log Z κ , r - 1 / ∂ β ) { V } ( 10 ) 

This is a recursive relation between the κ partition functions. Combined with 

Equation (9), it gives a final expression for the mean energy 

U ( β ) = - κ ( ∂ log Z κ , r - 1 / ∂ β ) { V } κ + r - 1 + β ( ∂ log Z κ , r - 1 / ∂ β ) 

{ V } ( 11 ) 

which contains just the r -reduced partition function. Like in ordinary 

statistical mechanics, U (β) is determined as a derivative form of the 

partition function. This shows that all other statistical mechanical quantities 

can be derived solely from the partition function, which therefore contains all

the physics of the micro-canonical system. Still being quite involved, this 

form, as expected for very large κ, coincides with the expression U = −[∂(log

Z )/∂β] { V } of the mean energy in Boltzmann-Gibbs statistical mechanics. It 

is thus consistent with the expectations. Moreover, at increased 

temperatures β → 0, the mean classical energy becomes 

U ( β ) = - κ κ + r - 1 [ ∂ ( log Z κ , r - 1 ) ∂ β ] { V } T ≫ 0 ( 12 ) 

The general second last equation (11), which holds for arbitrary β < ∞, 

resolved for the derivative of the partition function as function of mean 

energy U (β), yields 
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( ∂ log Z κ , r - 1 ∂ β ) { V } = ( 1 + r - 1 κ ) U ( β ) ( 1 + β U ( β ) κ ) - 1 ( 13 ) 

= ( 1 + r - 1 κ ) [ 1 - ( 1 + β U ( β ) κ ) - 1 ] ( 14 ) 

an expression that can be made use of later. At high temperatures, i. e., 

small β, the first version shows that the derivative of the partition function 

yields the mean energy, the usual Boltzmann-Gibbs result. 

At very low temperature β ≫ 1, the mean energy drops out, which 

contradicts the physical intuition showing that the theory in this form applies

only to temperatures far from zero. The logarithm of the partition function is 

the integral 

log Z κ + r - 1 = ( 1 + r - 1 κ ) [ β - ∫ d β 1 + β U ( β ) / κ ] + G κ ( { V } ) 

( 15 ) 

with G κ ({ V }) a function of the constraints alone. Olbert-Lorentzian 

statistical mechanics in the above form applies to micro-canonical systems 

at high temperature only. It does, in this form, not describe quantum 

systems consisting of many components–a conclusion we had drawn already 

from different reasoning. This conclusion may, however, be circumvented 

when large external potential fields Φ are imposed, for instance, strong 

electric (cf., e. g., [ 21 ], who tried an application to high temperature non-

ideal quantum systems) or gravitational potential fields (an example would 

be the region around the black hole horizon), in which case the difference U 

(β) − Φ > 0 may become positive for −Φ > κ/2β. 
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3. 2. Entropy 
The most important quantity in statistical mechanics is the entropy. 

Differentiating the energy U (β) with respect to temperature k B β - 1 while 

fixing the set of constraints { V } gives the heat capacity 

C { V } κ = - k B β 2 ( ∂ U ( β ) ∂ β ) { V } ( 16 ) 

With entropy S , one has quite generally TdS = C { V } dT holding in the 

micro-canonical ensembles where the volume is fixed, dV = 0. Hence C { V } 

= −β(∂ S /∂β) { V } . Keeping the constraints fixed, these relations usually 

lead to 

( ∂ S ∂ β ) { V } = - k B β ( ∂ U ( β ) ∂ β ) { V } ( 17 ) 

Integration with respect to β then yields in full generality the well-known 

formal expression for the wanted Olbert entropy S κ of the micro-canonical 

system 

S k B = - β U ( β ) + ∫ d β U ( β ) + G S ( { V } ) ( 18 ) 

as the integral over the mean energy U (β), where G S ({ V }) is an arbitrary 

function of the constraints alone. In classical statistics, this formula yields 

the well-known closed analytical expression of the entropy. Unfortunately, in 

Olbert's case the mean energy Equation (11) is not as simple as in 

Boltzmann-Gibbs statistical mechanics 3 . We are thus stuck for the moment.

Nevertheless, taking the derivative of the mean energy with respect to β, 

one obtains formally 
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( ∂ S ∂ β ) { V } = - κ k B β ∂ ∂ β [ ∂ ( log Z κ , r - 1 ) / ∂ β κ + r - 1 + β ∂ ( log Z

κ , r - 1 ) / ∂ β ] { V } ( 19 ) 

as an implicit expression for the derivative of the entropy S as functional of 

the partition function. It replaces the corresponding relation in classical 

Boltzmann-Gibbs statistical mechanics, which applies to any purely 

stochastic many particle system–in particular to high-temperature plasmas. 

Equation (18) is the entropy of a micro-canonical κ system. It is a quite 

involved form whose properties cannot be easily inferred. Its discussion 

requires the complete knowledge of the set of energy levels of the micro-

canonical system. As discussed above, its extension to canonical systems is 

straightforward, as well as the inclusion of an exponential “ ultraviolet” 

truncation of the distribution at high energy E c > U . All interesting statistical

mechanical properties of the κ ensemble can in principle be deduced from 

this entropy respectively the partition function Z κ, r −1 . 

3. 3. High-Temperature Limit 
In the high temperature small β limit, one neglects the derivative in the 

denominator in the second last equation. In this case, the entropy becomes a

κ-modified (Boltzmann-Olbert-Lorentzian) entropy 

( ∂ S ∂ β ) { V } = - κ k B β κ + r - 1 ∂ ∂ β [ ∂ ( log Z κ , r - 1 ) ∂ β ] { V } , T ≫ 

0 ( 20 ) 

No zero-temperature expression exists, while the role of the partition 

function is played by the sum of the probabilities of the states indexed by 

the constant power r − 1 instead of r . For a three-dimensional ideal gas with
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continuous energy spectrum one has r = 5 2 , and its high-temperature 

classical κ-partition function is 

Z κ + 3 2 ( β ) = ∑ α p α , κ + 3 2 ≡ ∑ α ( 1 + β E α κ ) - κ - 3 2 , T ≫ 0 ( 21 ) 

With this partition function and the definition of the high-temperature mean 

energy (12), we are in the position to obtain the high-temperature entropy in

the form in which it applies to fluids and plasmas: 

S κ k B κ = - β [ ∂ log Z κ + r - 1 ( β ) ∂ β ] { V } + log Z κ + r - 1 ( β ) ( 22 ) 

where we left r undetermined available for application to any non-ideal 

systems and dropped the arbitrary function G S of the constraints, which can 

be added when needed–for instance to account for boundary conditions. 

Except for the modification of the partition function, the entropy at high 

temperatures is measured in units of a κ-reduced Boltzmann constant 

k B κ = k B ( 1 + r - 1 κ ) - 1 , 0 ≰ κ < ∞ ( 23 ) 

which in a three-dimensional ideal plasma becomes k Bκ = k B /(1 + 3/2κ). 

3. 4. Phase Space Density of States 
As in ordinary Boltzmann-Gibbs statistical mechanics, the Olbert partition 

function for large numbers of states (energy levels) Ω κ , which is the volume 

of the phase space, is well-approximated by 

Z κ , r - 1 ≈ Ω κ , r - 1 ( 1 + β U ( β ) κ ) - κ - r + 1 ( 24 ) 

the product of the phase space volume Ω κ, r −1 and the probability of the 

most probable state, which is the state of mean energy U (β). This holds, in 
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particular for the exponentially truncated distribution, because the high 

energy states contribute very little if only the energy fluctuations are not 

overwhelmingly large. These fluctuations become large only in systems 

containing very small numbers of particles, which is barely given at the 

assumed high temperatures in a plasma. 

Taking advantage of the dependence of the ratio of the partition functions Z 

κ, r −1 / Z κ, r on the average energy U (β), which does not depend on r , one 

finds that 

Ω κ , r - 1 = Ω κ , r ≡ Ω κ ( 25 ) 

At high temperatures β ≪ 1, we have 

S κ ≈ k B κ log Z κ , r - 1 + k B κ ( κ + r - 1 ) log ( 1 + β U ( β ) κ ) ≈ k B κ log 

Ω κ ( 26 ) 

which can also be written 

P κ ~ Ω κ = exp ( S κ / k B κ ) ( 27 ) 

In classical high-temperature micro-canonical systems (many-particle 

plasmas) this closes the circle, as we have shown [ 24 ] that from this 

equation it follows by standard methods that the probability distribution is 

given by Equation (2). Generalization to the canonical system of N particles 

is straightforward. Notably, it generalizes to κ-systems Einstein's prescription

[ 25 ] of the dependence of the phase space density on entropy in his proof 

of the stochastic nature of the diffusion in Brownian motion, though with 

substantially more complicated expression for the entropy. 
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3. 5. Approximation 
The Olbert κ-distribution maintains the structure of statistical mechanics at 

high temperatures while it substantially modifies it at moderate and low 

temperatures with no zero-temperature limit existing. We have argued 

previously that this is quite reasonable whenever internal correlations come 

into play causing κ to deviate strongly from κ = ∞. Classically, this can 

happen only at large T and is due to non-linear interactions that violate ideal 

stochasticity and cause anomalous effects like anomalous diffusivity. 

Nevertheless, in the range 

log Z κ , r - 1 ≫ ( κ + r - 1 ) log β or Z κ , r - 1 ≫ β κ + r - 1 ( 28 ) 

which holds for sufficiently large β, the equation for the Olbert entropy 

simplifies. In this case the derivatives of the logarithms of the partition 

function cancel, and the entropy equation becomes 

( ∂ S ∂ β ) { V } ≈ - κ k B β ∂ ∂ β 1 β , 1 ≪ β < ∞ ( 29 ) 

which of course holds for finite β only. Integration then yields that in this β 

range 

S k B ∝ κ log β ≪ κ κ + r - 1 log Z κ , r - 1 ( 30 ) 

or otherwise 

Z κ , r - 1 ≫ exp S k B κ ( 31 ) 

In the moderate temperature range where 0 ≪ β ≪ ∞ no closed forms for 

either the energy nor the entropy are obtained. For those values of β, the full

expression (19) for the derivative of the entropy applies. A correction to this 
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equation follows when taking the first next term of the expansion of the 

denominator 

( ∂ S ∂ β ) { V } = − κ k B κ + r − 1 β ∂ ∂ β { ( ∂ log Z κ , r − 1 ∂ β ) { V } − β 

( ∂ log Z κ , r − 1 / ∂ β ) { V } 2 κ + r − 1 + h . o . t . } ( 32 ) 

The first term yields, when integrated, the above high-temperature entropy. 

The second term is quadratic and hence remains to be negative. It subtracts 

from the first term. Reducing the temperature, i. e., increasing β, obviously 

diminishes the derivative of the entropy because the last quadratic term is 

always positive. It seems that the derivative of the entropy as function of 

temperature in a κ-system flattens out when the temperature drops into the 

intermediate range. Any κ ≠ ∞ affects the increase in entropy. 

In principle, the last equation can be solved iteratively for the entropy, which

then retains the effects of the parameter κ outside the ranges of very large 

and small β. 

4. Entropy as Functional of Probability 
Boltzmann defined the micro-canonical entropy S Bα ∝ log p α as a functional 

of probability. The average measured entropy is its expectation value, the 

sum  S B  ∝ ∑ α p α log p α of all probability-weighted contributions of the 〈 〉

states to the entropy. For a continuous distribution of states, this is as 

usually defined as the probability integral taken over the micro-canonical 

entropy. For arbitrary temperatures, the above expression cannot be 

integrated to provide a general analytical form for the entropy comparable to

conventional Boltzmann-Gibbs statistical mechanics. This was possible only 

at high temperatures. One can, however attempt to find an expression for 
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the functional dependence of the entropy on the probability in order to have 

an equivalent representation to the Boltzmann-Gibbs entropy when dealing 

with the Olbert entropy. 

4. 1. Reformulation of Mean Energy and Entropy 
For this to achieve, the mean energy (7) must be rewritten in terms of the 

probability p κα (β). This can, indeed, be done, and the corresponding 

expression reads 

U { p κ α ( β ) } = κ β Z κ - 1 { p κ α ( β ) } ∑ α [ p κ α 1 - γ ( β ) - p κ α ] 

( 33 ) 

where we introduced the exponent 

γ ≡ 1 κ + r ( 34 ) 

The braces indicate the functional dependence on p κα . In fact, Equation (33)

is identical to the inverse function that has been proposed [ 20 , 26 ] in the 

particular case of the Olbert-Lorentzian probability distribution 4 . On use of 

this functional dependence in the expression for the β-derivative we have 

1 κ k B ( ∂ S ∂ β ) { V } = - ∑ α β { ∂ ∂ β 1 β Z κ - 1 { p κ α ( β ) } [ p κ α 1 - γ 

( β ) - p κ α ( β ) ] } { V } ( 35 ) 

which shows that the derivative of the micro-canonical entropy with respect 

to β respectively temperature T is the sum over all states of the particular 

entropies 

1 κ k B ( ∂ S α ∂ β ) { V } = - β { ∂ ∂ β [ p κ α 1 - γ ( β ) - p κ α ( β ) ] β Z κ { p 

κ α ( β ) } } { V } ( 36 ) 
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of the α states. This expression replaces Boltzmann's definition to become 

Olbert's micro-canonical entropy, and it follows that 

S α { p κ α ( β ) } κ k B = - p κ α ( β ) Z κ { p κ α ( β ) } [ p κ α - γ ( β ) - 1 ] + 

∫ d β p κ α ( β ) Z κ { p κ α ( β ) } [ p κ α - γ ( β ) - 1 ] β ( 37 ) 

The factor p κα / Z κ = P κα is the normalized Olbert-Gibbs distribution, and 

the first term becomes its product with a function 

R κ α = 1 - p κ α - γ ( 38 ) 

This function also appears under the integral sign, such that we can write the

latter in an abbreviated version 

S α { p κ α ( β ) } κ k B = P κ α R κ α - ∫ d β β P κ α R κ α ( 39 ) 

This is the relation between the probabilities of states α and their 

corresponding entropies. The sum over all α states gives the total entropy 

S κ ( β ) κ k B = 1 - log ( β U 0 ) -  p κ α - γ ( β )  + ∫ d β β  p κ α - γ ( β )  + 〈 〉 〈 〉

G ( { V } ) ( 40 ) 

in terms of the average probability, i. e., the expectation value of the 

probability raised to the power −γ. Again, the angular brackets indicate the 

probability weighted average over all states α. U 0 is some normalizing 

thermal energy which to chose is arbitrary. The term containing it is of little 

importance. 

This entropy is substantially more complicated than in ordinary classical 

statistical mechanics. Nevertheless, it exhibits the relation between entropy 
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and probability. It distinguishes the Olbert-Lorentzian entropy from 

Boltzmann-Gibbs-Shannon. 

4. 2. Boltzmann-Gibbs Like Form of the Olbert Entropy 
Some insight can be obtained when considering the functional R , writing it 

R κ α = 1 - exp ( - γ log p κ α ) ( 41 ) 

Expanding the exponential yields to first order 

R κ α = γ log p κ α + higher order terms ( 42 ) 

Except for the factor γ this is just Boltzmann's micro-canonical entropy 

which, after multiplication with the probability and summation respectively 

integration yields the classical expression for the average entropy. From this 

equivalence, we conclude that, in the Olbert entropy S α { p κα(β) }, the 

functional R κα plays exactly the role of Boltzmann's micro-canonical entropy.

However, in Boltzmann theory, the logarithm of the probability is just the 

inverse of the Boltzmann factor of the energy of state α, with the energy E α 

expressed in terms of the probability p α . This is also exactly the meaning of 

the functional R κα { p κα }, which enables us to formulate the general 

Theorem 

Let p α (β, E α ) = f α (β, E α ) be the properly defined probability of a micro-

canonical state E α , and F { p α } = E α ( p α ) the inverse of f α . Then, up to 

some numerical factors, the micro-canonical entropy S α of the state α , 

expressed in terms of the probability p α , is defined as S α { p α } ∝ F { p α }
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; and the mean entropy S ≡  〈 S α  〉 of the micro-canonical system, given by 

the sum over all probability-weighted states α , is obtained in the form 

S ∝ ∑ α p α S α { p α } ∝ ∑ α p α F α { p α } ( 43 ) 

if only the inverse functional F { p α } exists and can be given either 

analytically or numerically. This formula is the general prescription of 

calculating the entropy in the micro-canonical state . 

Let us, for convenience, discuss just the leading first order terms in the 

above expression for the Olbert entropy, assuming for our purposes of 

understanding that the higher order terms do not substantially contribute, 

which in general might not always be true. It then follows from Equation (37) 

that 

S α { p κ α ( β ) } γ κ k B = P κ α ( β ) ( log P κ α + log Z κ ) - ∫ d β β P κ α 

( log P κ α + log Z κ ) + … ( 44 ) 

Except for the difficulty with the integral term, the first terms look about 

familiar. However, interestingly, this holds for the unsummed entropy. 

Summation then leads to the average entropy 

S κ | γ | κ k B =  log P κ ( β )  +  log Z κ  - ∫ d β β [  log P κ ( β )  +  log Z 〈 〉 〈 〉 〈 〉 〈

κ  ] ( 45 ) 〉

It reproduces the logarithmic dependence on the mean logarithm of the 

partition function in the second term. The first term also reproduces the 

classical dependence on the logarithm of the mean probability P κ . Further 

discussion is, however, less transparent, and the role of any higher order 
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terms in the expansion as well as the structure of the integral term obscure 

its interpretation. In this form, however, we may conclude that the κ-

generalization of classical statistical mechanics maintains its basic structure 

at least to lowest order. In any case, it becomes clear that the Olbert-

Lorentzian generalization can be justified in its application to micro-canonical

and, after proper extension to include the dependence on particle number, 

also to canonical systems. This is very satisfactory, as it gives Olbert-

Lorentzian statistical mechanics and the resulting Olbert-κ distribution a 

physically justified place in the treatment of many-particle systems like high 

temperature plasmas. The different expressions for the entropies are then 

available for the proper description of the evolution of such states in thermal

equilibrium as well as in non-equilibrium. 

4. 3. Quantum Considerations 
In this subsection we, for completeness, though just briefly, touch on the 

quantum extensions of Lorentzian entropies. We argued above that there is 

no zero-temperature limit of the Lorentzian statistics. This holds generally. 

Fermi statistics in addition inhibits correlations in the sense that any states α

could be occupied by more than one particle. Hence, correlations involved in 

κ can only be of the nature of entanglements, and, in addition to our finding 

that the state T = 0 is principally excluded, this additional restriction 

categorically excludes application to Fermi systems other than entanglement

of two particles of opposing spins. Below we briefly consider this case. 

What concerns Bose statistics, the latter restriction is relaxed. States can 

obey arbitrary occupation numbers. Hence, high energy states can exist. 

Then, one will be able to find an appropriate expression for the Bose entropy,
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which we will provide in a follow-up communication, as this requires another 

lengthy derivation which goes beyond the present note. 

We just briefly mention another interesting quantum case resulting in Fermi 

systems, the entanglement, or von Neumann entropy [ 27 ]. It is defined as 

S v N = Trace ( ρ log ρ ) ( 46 ) 

where ρ = ∑ α | ψ α   ψ α | is the average scattering matrix in a quantum 〉 〈

system, and Trace is its trace. Clearly, if all ψ α are true eigenstates of the 

entire system, ρ = 0, then the system is in its own eigenstate, and no 

entropy is produced. Otherwise, the entropy results from superposing all 

eigenstates | α  of its components, yielding ρ = ∑ α η α | α   α | , which 〉 〉 〈

contains all the irreversible interactions encoded in the superpositions of 

eigenstates of the components which contribute to the common wave 

function of the entire many particle system. Intuitively this is clear because 

all the different phases of the components will mix; the common wave 

function, being the superposition of all individual or grouped particle wave 

functions, will by no means become an eigenstate of the system. This is very

frequently misunderstood when talking about fluid models of quantum 

theory and identifying the density with the expectation value of the wave 

function. In a quantum mechanical Olbert κ system, where the particles are 

correlated and by some interaction mechanism are bunched together one 

may even expect that the scattering matrix contains non-diagonal terms 

indicating dissipation. One such mechanism is entanglement between two 

prepared Fermions of opposite spin. By it, two particles (electrons in the 

same state but of different spin) are bound together in their common 
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behavior. They are subject to von Neumann's entropy. If the entanglement 

can be encoded into a parameter κ, then its entropy may be conjectured to 

become 

S v N κ ~ Trace ( ρ κ log ρ κ 1 - γ ) = ( 1 - γ ) Trace ( ρ κ log ρ κ ) ( 47 ) 

and one has ρ κ = ∑ α | ψ κ α   ψ κ α | = ∑ α η κ α | α κ   α κ | . The κ wave 〉 〈 〉 〈

function might, however, not be known a priori. Since entanglement applies 

to electrons, or in general Fermions, which by our above reasoning are not 

subject to Lorentzian statistics, then, in κ-statistics, it would apply to the 

bosonic property of paired electrons of opposite spin and must thus 

somehow, though not in an elucidated manner, relate to Boson-Lorentzian 

entropy of collectively grouped pairs like in superconductivity. If true, the 

parameter κ appearing in the von Neumann entropy then contains the 

physics of group entanglement. Otherwise, κ statistics do not apply in any 

manner to any entanglement, and no von Neumann-Lorentzian entropy 

exists. 

5. Conclusions 
In the present paper, we have undertaken the task of trying to understand 

what physically would be behind Olbert-Lorentzian statistics. As the Olbert-κ 

distribution function that belongs to it is well-confirmed from a large number 

of observations mainly in space plasmas, this effort is needed to give a clue 

on its foundations. Applying statistical mechanical reasoning we have 

obtained expressions for the entropy as a functional of energy and also as 

functional of probability of states. What is most interesting in such an 

approach is that the Olbert entropy S κ has an equivalent form to that in 
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ordinary non-equilibrium statistical mechanics. Olbert entropy, however, 

contains additional terms which can be calculated in an iterative 

perturbation theoretical way. It is for this reason super-additive (or super-

extensive if wanted), a property that it has in common with q -statistics 

though being rather different. We have elucidated the main difference here. 

This means that in κ-systems, i. e., for instance, in high-temperature plasmas

exhibiting Olbert-distributions, the particles are correlatively grouped 

together to behave collectively, thereby providing the collective contribution 

to entropy. Such correlations are implicit to the index κ and indicate strong 

non-linear couplings, which are provided by interaction potentials which are 

mediated not by collisions but by excitation of waves. It is thus not surprising

if κ-distributions are found in turbulent dilute high temperature plasmas like 

the solar wind [ 28 ], near collisionless shock waves [ 29 ], Earth's bow shock

[ 30 ], the magnetosheath [ 31 ], at the boundaries of the heliosphere and 

astrospheres [ 32 ], where various types of waves can be excited as both, 

eigenmodes or sidebands, which even occupy the evanescent branches of 

the dielectric response function causing a continuous almost featureless 

power spectrum of fluctuations, which is typical for well-developed 

turbulence. One may, therefore, expect that the statistical mechanics 

underlying well-developed collisionless turbulence will become kind of 

Olbert-Lorentzian in terms of the probability distribution. The precise relation

between these interactions and the particular value of the parameter κ is still

open to investigation. The consideration of entropy given here only shows its

micro-canonical statistical-mechanical effect. 
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Footnotes 
1. ^ Stanislaw (Stan) Olbert (1923–2017, of Polish origin, after WW II a 

graduate of Arnold Sommerfeld in Munich, and, since 1957, Professor of 

Physics at MIT, working on the American Space Program with Bruno Rossi, 

the main discoverer of the X-ray sky and, together with Riccardo Giacconi, 

who later was awarded the Nobel Prize for this, founder of X-ray astronomy) 

invented the κ-probability distribution to fit observed IMP spacecraft particle 

spectra. He suggested its application to electron fluxes measured by the 

OGO spacecraft to Vasyliunas [ 6 ] whose publication became one of the 

most referenced papers in space physics for no other reason than the first 

refereed formal appearance of Olbert's κ distribution in the literature. 

2. ^ Historically, Renyi's proposal of a q -entropy (for the complete theory 

see [ 18 ]) came first (in a badly accessible publication by Balatoni and Renyi
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[ 17 ] in very general form, which implicitly already contained Tsallis' entropy

as a particular case). This might have been known to Stan Olbert (who 

probably was familiar with the Hungarian literature). He used the property 

that for large parameter q → ∞, as proposed by Renyi, and the modified 

mathematical expression agreed with Boltzmann's exponential. Olbert, 

however, tried a substantially simpler analytical form, calling the free 

parameter κ instead of q to distinguish it from Renyi's logarithm, as, in fact, 

it has a different meaning. Two decades later, Tsallis [ 19 ] used the property

of Olbert's function, presumably not knowing Olbert's or Vasyliunas' much 

earlier papers and probably also not those by Balatoni and Renyi; Renyi, 

however, referred to the latter in his book, which Tsallis should have been 

familiar with because, at that time, Renyi's q -entropy was already highly 

celebrated in the then blossoming chaos theory. In contrast to Olbert, 

however, Tsallis did not apply it to the probability distribution. Rather, 

following Renyi's logarithmic approach, he used it in the entropy definition, 

arriving at his analytically simpler modified q -entropy. The two approaches 

of Olbert and Tsallis thus differ in the way of how the substitution for the 

exponential is used. As with ours, Olbert's interest was in the observed 

probability or momentum space distribution, and it was thus manifestly 

practical. Renyi's interest and later that of Tsalli was theoretica, and it was 

thus directed at entropy. Tsallis' led, and consequently developed, to his 

thermostatistics. In contrast, in an attempt to justify Olbert's distribution, we 

arrived originally at a κ-distribution from a consequent reference to kinetic 

theory [ 20 ], not yet recognizing, however, the important role of the 

constant r . As it turns out, both approaches are indeed rather different, even

though a formal relation between the parameters κ and q can easily be 
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construed while maintaining their different meanings, which is frequently 

overlooked when identifying q and κ statistics, as these have little in 

common. 

3. ^ At this point κ and q statistics differ for the simple fact that in the latter 

the entropy is analytically prescribed in the form of a rational function with 

real q , and the complication is transferred to the construction of the 

distribution. Here, instead, the starting point is the observed distribution, 

which, naturally, leads to complications in finding the entropy, as it is the 

entropy which contains the complicated physics; this then leads to the 

measured probability distribution. One should also note that the combined 

entropies of two systems in both cases, q and Olbert statistical mechanics, 

though the two theories are different and describe different physics, are 

super-additive, sometimes called non-extensive. They contain an additional 

mixed term which contributes to the entropy, as criticized by Nauenberg [ 22

]. This, however, does not mean that the theory has no physical meaning. It 

just implies that the theory describes statistical quasi-equilibria far from 

thermal equilibrium, i. e., slowly variable quasi-stationary states which pass 

through several equilibria, typical for non-equilibrium statistical mechanics [

23 ]. 

4. ^ In other approaches this inverse appears as a mysterious “ escort 

distribution,” which plays the role of some integration condition when 

forming lowest order moments. In fact, it is nothing but an inverse function 

as was proposed already [ 26 ] and, in other choices of the probability 

distribution, would be obtained in the same way by inversion. 
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