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Generally, in Image Processing the transformation is the basic technique that

we apply in order to study the characteristics of the Image under scan. 

Under this process here we present a method in which we are analyzing the 

performance of the two methods namely, PCA and DCT. In this thesis we are 

going to analyze the system by first training the set for particular no. Of 

images and then analyzing the performance for the two methods by 

calculating the error in this two methods. 

This thesis referred and tested the PCA and DCT transformation techniques. 

PCA is a technique which involves a procedure which mathematically 

transforms number of probably related parameters into smaller number of 

parameters whose values don’t change called principal components. The 

primary principal component accounts for much variability in the data, and 

each succeeding component accounts for much of the remaining variability. 

Depending on the application field, it is also called the separate Karhunen-

Loève transform (KLT), the Hotelling transform or proper orthogonal 

decomposition (POD). 

DCT expresses a series of finitely many data points in terms of a sum of 

cosine functions oscillating at different frequencies. 

Transformations are important to numerous applications in science and 

engineering, from lossy compression of audio and images (where small high-

frequency components can be discarded), to spectral methods for the 

numerical solution of partial differential equations. 
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CHAPTER 1 

INTRODUCTION 

1. 1 Introduction 
Over the past few years, several face recognition systems have been 

proposed based on principal components analysis (PCA) [14, 8, 13, 15, 1, 10,

16, 6]. Although the details vary, these systems can all be described in terms

of the same preprocessing and run-time steps. During preprocessing, they 

register a gallery of m training images to each other and unroll each image 

into a vector of n pixel values. Next, the mean image for the gallery is 

subtracted from each and the resulting “ centered” images are placed in a 

gallery matrix M. Element [i; j] of M is the ith pixel from the jth image. A 

covariance matrix W = MMT characterizes the distribution of the m images in

n. A subset of the Eigenvectors of W are used as the basis vectors for a 

subspace in which to compare gallery and novel probe images. When sorted 

by decreasing Eigenvalue, the full set of unit length Eigenvectors represent 

an orthonormal basis where the first direction corresponds to the direction of

maximum variance in the images, the second the next largest variance, etc. 

These basis vectors are the Principle Components of the gallery images. 

Once the Eigenspace is computed, the centered gallery images are projected

into this subspace. At run-time, recognition is accomplished by projecting a 

centered probe image into the subspace and the nearest gallery image to 

the probe image is selected as its match. There are many differences in the 

systems referenced. Some systems assume that the images are registered 

prior to face recognition [15, 10, 11, 16]; among the rest, a variety of 

techniques are used to identify facial features and register them to each 
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other. Different systems may use different distance measures when 

matching probe images to the nearest gallery image. Different systems 

select different numbers of Eigenvectors (usually those corresponding to the 

largest k Eigenvalues) in order to compress the data and to improve 

accuracy by eliminating Eigenvectors corresponding to noise rather than 

meaningful variation. To help evaluate and compare individual steps of the 

face recognition process, Moon and Phillips created the FERET face database,

and performed initial comparisons of some common distance measures for 

otherwise identical systems [10, 11, 9]. This paper extends their work, 

presenting further comparisons of distance measures over the FERET 

database and examining alternative way of selecting subsets of 

Eigenvectors. The Principal Component Analysis (PCA) is one of the most 

successful techniques that have been used in image recognition and 

compression. PCA is a statistical method under the broad title of factor 

analysis. The purpose of PCA is to reduce the large dimensionality of the 

data space (observed variables) to the smaller intrinsic dimensionality of 

feature space (independent variables), which are needed to describe the 

data economically. This is the case when there is a strong correlation 

between observed variables. The jobs which PCA can do are prediction, 

redundancy removal, feature extraction, data compression, etc. Because PCA

is a classical technique which can do something in the linear domain, 

applications having linear models are suitable, such as signal processing, 

image processing, system and control theory, communications, etc. Face 

recognition has many applicable areas. Moreover, it can be categorized into 

face identification, face classification, or sex determination. The most useful 

applications contain crowd surveillance, video content indexing, personal 
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identification (ex. driver’s license), mug shots matching, entrance security, 

etc. The main idea of using PCA for face recognition is to express the large 1-

D vector of pixels constructed from 2-D facial image into the compact 

principal components of the feature space. This can be called eigen space 

projection. Eigen space is calculated by identifying the eigenvectors of the 

covariance matrix derived from a set of facial images(vectors). The details 

are described in the following section. 

PCA computes the basis of a space which is represented by its training 

vectors. These basis vectors, actually eigenvectors, computed by PCA are in 

the direction of the largest variance of the training vectors. As it has been 

said earlier, we call them eigenfaces. Each eigenface can be viewed a 

feature. When a particular face is projected onto the face space, its vector 

into the face space describe the importance of each of those features in the 

face. The face is expressed in the face space by its eigenface coefficients (or 

weights). We can handle a large input vector, facial image, only by taking its 

small weight vector in the face space. This means that we can reconstruct 

the original face with some error, since the dimensionality of the image 

space is much larger than that of face space. 

A face recognition system using the Principal Component Analysis (PCA) 

algorithm. Automatic face recognition systems try to find the identity of a 

given face image according to their memory. The memory of a face 

recognizer is generally simulated by a training set. In this project, our 

training set consists of the features extracted from known face images of 

different persons. Thus, the task of the face recognizer is to find the most 

similar feature vector among the training set to the feature vector of a given 
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test image. Here, we want to recognize the identity of a person where an 

image of that person (test image) is given to the system. You will use PCA as 

a feature extraction algorithm in this project. In the training phase, you 

should extract feature vectors for each image in the training set. Let A be a 

training image of person A which has a pixel resolution of M £ N (M rows, N 

columns). In order to extract PCA features of A, you will first convert the 

image into a pixel vector ÁA by concatenating each of the M rows into a 

single vector. The length (or, dimensionality) of the vector ÁA will be M £N. In

this project, you will use the PCA algorithm as a dimensionality reduction 

technique which transforms the vector ÁA to a vector ! A which has a 

imensionality d where d ¿ M £ N. For each training image i, you should 

calculate and store these feature vectors ! i. In the recognition phase (or, 

testing phase), you will be given a test image j of a known person. Let ®j be 

the identity (name) of this person. As in the training phase, you should 

compute the feature vector of this person using PCA and obtain ! j . In order 

to identify j , you should compute the similarities between ! j and all of the 

feature vectors ! i’s in the training set. The similarity between feature 

vectors can be computed using Euclidean distance. The identity of the most 

similar ! i will be the output of our face recognizer. If i = j, it means that we 

have correctly identified the person j, otherwise if i 6= j, it means that we 

have misclassified the person j. 

1. 2 Thesis structure: 
This thesis work is divided into five chapters as follows. 
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Chapter 1: Introduction 
This introductory chapter is briefly explains the procedure of transformation 

in the Face Recognition and its applications. And here we explained the 

scope of this research. And finally it gives the structure of the thesis for 

friendly usage. 

Chapter 2: Basis of Transformation Techniques. 
This chapter gives an introduction to the Transformation techniques. In this 

chapter we have introduced two transformation techniques for which we are 

going to perform the analysis and result are used for face recognition 

purpose 

Chapter 3: Discrete Cosine Transformation 
In this chapter we have continued the part from chapter 2 about 

transformations. In this other method ie., DCT is introduced and analysis is 

done 

Chapter 4: Implementation and results 
This chapter presents the simulated results of the face recognition analysis 

using MATLAB. And it gives the explanation for each and every step of the 

design of face recognition analysis and it gives the tested results of the 

transformation algorithms. 

Chapter 5: Conclusion and Future work 
This is the final chapter in this thesis. Here, we conclude our research and 

discussed about the achieved results of this research work and suggested 

future work for this research. 
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CHAPTER 2 

BASICs of Image Transform Techniques 

2. 1 Introduction: 
Now a day’s Image Processing has been gained so much of importance that 

in every field of science we apply image processing for the purpose of 

security as well as increasing demand for it. Here we apply two different 

transformation techniques in order study the performance which will be 

helpful in the detection purpose. The computation of the performance of the 

image given for testing is performed in two steps: 

PCA (Principal Component Analysis) 

DCT (Discrete Cosine Transform) 

2. 2 Principal Component Analysis: 
PCA is a technique which involves a procedure which mathematically 

transforms number of possibly correlated variables into smaller number of 

uncorrelated variables called principal components. The first principal 

component accounts for much variability in the data, and each succeeding 

component accounts for much of the remaining variability. Depending on the

application field, it is also called the discrete Karhunen-Loève transform 

(KLT), the Hotelling transform or proper orthogonal decomposition (POD). 

Now PCA is mostly used as a tool in exploration of data analysis and for 

making prognostic models. PCA also involves calculation for the Eigen value 

decomposition of a data covariance matrix or singular value decomposition 

of a data matrix, usually after mean centring the data from each attribute. 

https://assignbuster.com/performance-measure-of-pca-and-dct-for-images/



Performance measure of pca and dct for i... – Paper Example Page 9

The results of this analysis technique are usually shown in terms of 

component scores and also as loadings. 

PCA is real Eigen based multivariate analysis. Its action can be termed in 

terms of as edifying the inner arrangement of the data in a shape which give

details of the mean and variance in the data. If there is any multivariate data

then it’s visualized as a set if coordinates in a multi dimensional data space, 

this algorithm allows the users having pictures with a lower aspect reveal a 

shadow of object in view from a higher aspect view which reveals the true 

informative nature of the object. 

PCA is very closely related to aspect analysis, some statistical software 

packages purposely conflict the two techniques. True aspect analysis makes 

different assumptions about the original configuration and then solves 

eigenvectors of a little different medium. 

2. 2. 1 PCA Implementation: 
PCA is mathematically defined as an orthogonal linear transformation 

technique that transforms data to a new coordinate system, such that the 

greatest variance from any projection of data comes to lie on the first 

coordinate, the second greatest variance on the second coordinate, and so 

on. PCA is theoretically the optimum transform technique for given data in 

least square terms. 

For a data matrix, XT, with zero empirical mean ie., the empirical mean of 

the distribution has been subtracted from the data set, where each row 

represents a different repetition of the experiment, and each column gives 

the results from a particular probe, the PCA transformation is given by: 
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Where the matrix Î£ is an m-by-n diagonal matrix, where diagonal elements 

ae non-negative and W Î£ VT is the singular value decomposition of X. 

Given a set of points in Euclidean space, the first principal component part 

corresponds to the line that passes through the mean and minimizes the 

sum of squared errors with those points. The second principal component 

corresponds to the same part after all the correlation terms with the first 

principal component has been subtracted from the points. Each Eigen value 

indicates the part of the variance ie., correlated with each eigenvector. Thus,

the sum of all the Eigen values is equal to the sum of squared distance of the

points with their mean divided by the number of dimensions. PCA rotates the

set of points around its mean in order to align it with the first few principal 

components. This moves as much of the variance as possible into the first 

few dimensions. The values in the remaining dimensions tend to be very 

highly correlated and may be dropped with minimal loss of information. PCA 

is used for dimensionality reduction. PCA is optimal linear transformation 

technique for keeping the subspace which has largest variance. This 

advantage comes with the price of greater computational requirement. In 

discrete cosine transform, Non-linear dimensionality reduction techniques 

tend to be more computationally demanding in comparison with PCA. 

Mean subtraction is necessary in performing PCA to ensure that the first 

principal component describes the direction of maximum variance. If mean 

subtraction is not performed, the first principal component will instead 

correspond to the mean of the data. A mean of zero is needed for finding a 

basis that minimizes the mean square error of the approximation of the data.
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Assuming zero empirical mean (the empirical mean of the distribution has 

been subtracted from the data set), the principal component w1 of a data set

x can be defined as: 

With the first k âˆ’ 1 component, the kth component can be found by 

subtracting the first k âˆ’ 1 principal components from x: 

and by substituting this as the new data set to find a principal component in 

The other transform is therefore equivalent to finding the singular value 

decomposition of the data matrix X, 

and then obtaining the space data matrix Y by projecting X down into the 

reduced space defined by only the first L singular vectors, WL: 

The matrix W of singular vectors of X is equivalently the matrix W of 

eigenvectors of the matrix of observed covariance’s C = X XT, 

The eigenvectors with the highest eigen values correspond to the 

dimensions that have the strongest correlation in the data set (see Rayleigh 

quotient). 

PCA is equivalent to empirical orthogonal functions (EOF), a name which is 

used in meteorology. 

An auto-encoder neural network with a linear hidden layer is similar to PCA. 

Upon convergence, the weight vectors of the K neurons in the hidden layer 

will form a basis for the space spanned by the first K principal components. 

Unlike PCA, this technique will not necessarily produce orthogonal vectors. 
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PCA is a popular primary technique in pattern recognition. But it’s not 

optimized for class separability. An alternative is the linear discriminant 

analysis, which does take this into account. 

2. 2. 2 PCA Properties and Limitations 
PCA is theoretically the optimal linear scheme, in terms of least mean square

error, for compressing a set of high dimensional vectors into a set of lower 

dimensional vectors and then reconstructing the original set. It is a non-

parametric analysis and the answer is unique and independent of any 

hypothesis about data probability distribution. However, the latter two 

properties are regarded as weakness as well as strength, in that being non-

parametric, no prior knowledge can be incorporated and that PCA 

compressions often incur loss of information. 

The applicability of PCA is limited by the assumptions[5] made in its 

derivation. These assumptions are: 

We assumed the observed data set to be linear combinations of certain 

basis. Non-linear methods such as kernel PCA have been developed without 

assuming linearity. 

PCA uses the eigenvectors of the covariance matrix and it only finds the 

independent axes of the data under the Gaussian assumption. For non-

Gaussian or multi-modal Gaussian data, PCA simply de-correlates the axes. 

When PCA is used for clustering, its main limitation is that it does not 

account for class separability since it makes no use of the class label of the 

feature vector. There is no guarantee that the directions of maximum 

variance will contain good features for discrimination. 
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PCA simply performs a coordinate rotation that aligns the transformed axes 

with the directions of maximum variance. It is only when we believe that the 

observed data has a high signal-to-noise ratio that the principal components 

with larger variance correspond to interesting dynamics and lower ones 

correspond to noise. 

2. 2. 3 Computing PCA with covariance method 
Following is a detailed description of PCA using the covariance method . The 

goal is to transform a given data set X of dimension M to an alternative data 

set Y of smaller dimension L. Equivalently; we are seeking to find the matrix 

Y, where Y is the KLT of matrix X: 

Organize the data set 
Suppose you have data comprising a set of observations of M variables, and 

you want to reduce the data so that each observation can be described with 

only L variables, L < M. Suppose further, that the data are arranged as a set 

of N data vectors with each representing a single grouped observation of the

M variables. 

Write as column vectors, each of which has M rows. 

Place the column vectors into a single matrix X of dimensions M Ã- N. 

Calculate the empirical mean 
Find the empirical mean along each dimension m = 1,  …,  M. 

Place the calculated mean values into an empirical mean vector u of 

dimensions M Ã- 1. 
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Calculate the deviations from the mean 
Mean subtraction is an integral part of the solution towards finding a 

principal component basis that minimizes the mean square error of 

approximating the data. Hence we proceed by centering the data as follows: 

Subtract the empirical mean vector u from each column of the data matrix X.

Store mean-subtracted data in the M Ã- N matrix B. 

where h is a 1 Ã- N row vector of all 1s: 

Find the covariance matrix 
Find the M Ã- M empirical covariance matrix C from the outer product of 

matrix B with itself: 

where 

is the expected value operator, 

is the outer product operator, and 

is the conjugate transpose operator. 

Please note that the information in this section is indeed a bit fuzzy. Outer 

products apply to vectors, for tensor cases we should apply tensor products, 

but the covariance matrix in PCA, is a sum of outer products between its 

sample vectors, indeed it could be represented as B. B*. See the covariance 

matrix sections on the discussion page for more information. 
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Find the eigenvectors and eigenvalues of the covariance 
matrix 
Compute the matrix V of eigenvectors which diagonalizes the covariance 

matrix C: 

where D is the diagonal matrix of eigenvalues of C. This step will typically 

involve the use of a computer-based algorithm for computing eigenvectors 

and eigenvalues. These algorithms are readily available as sub-components 

of most matrix algebra systems, such as MATLAB[7][8], Mathematica[9], 

SciPy, IDL(Interactive Data Language), or GNU Octave as well as OpenCV. 

Matrix D will take the form of an M Ã- M diagonal matrix, where 

is the mth eigenvalue of the covariance matrix C, and 

Matrix V, also of dimension M Ã- M, contains M column vectors, each of 

length M, which represent the M eigenvectors of the covariance matrix C. 

The eigenvalues and eigenvectors are ordered and paired. The mth 

eigenvalue corresponds to the mth eigenvector. 

Rearrange the eigenvectors and eigenvalues 
Sort the columns of the eigenvector matrix V and eigenvalue matrix D in 

order of decreasing eigenvalue. 

Make sure to maintain the correct pairings between the columns in each 

matrix. 
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Compute the cumulative energy content for each eigenvector
The eigenvalues represent the distribution of the source data’s energy 

among each of the eigenvectors, where the eigenvectors form a basis for the

data. The cumulative energy content g for the mth eigenvector is the sum of 

the energy content across all of the eigenvalues from 1 through m: 

Select a subset of the eigenvectors as basis vectors 
Save the first L columns of V as the M Ã- L matrix W: 

where 

Use the vector g as a guide in choosing an appropriate value for L. The goal 

is to choose a value of L as small as possible while achieving a reasonably 

high value of g on a percentage basis. For example, you may want to choose

L so that the cumulative energy g is above a certain threshold, like 90 

percent. In this case, choose the smallest value of L such that 

Convert the source data to z-scores 
Create an M Ã- 1 empirical standard deviation vector s from the square root 

of each element along the main diagonal of the covariance matrix C: 

Calculate the M Ã- N z-score matrix: 

(divide element-by-element) 

Note: While this step is useful for various applications as it normalizes the 

data set with respect to its variance, it is not integral part of PCA/KLT! 

Project the z-scores of the data onto the new basis 
The projected vectors are the columns of the matrix 
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W* is the conjugate transpose of the eigenvector matrix. 

The columns of matrix Y represent the Karhunen-Loeve transforms (KLT) of 

the data vectors in the columns of matrix X. 

2. 2. 4 PCA Derivation 

Let X be a d-dimensional random vector expressed as column vector. 

Without loss of generality, assume X has zero mean. We want to find a 

Orthonormal transformation matrix P such that 

with the constraint that 

is a diagonal matrix and 

By substitution, and matrix algebra, we obtain: 

We now have: 

Rewrite P as d column vectors, so 

and as: 

Substituting into equation above, we obtain: 

Notice that in , Pi is an eigenvector of the covariance matrix of X. Therefore, 

by finding the eigenvectors of the covariance matrix of X, we find a 

projection matrix P that satisfies the original constraints. 
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CHAPTER 3 

DISCRETE Cosine transform 

3. 1 Introduction: 
A discrete cosine transform (DCT) expresses a sequence of finitely many 

data points in terms of a sum of cosine functions oscillating at different 

frequencies. DCTs are important to numerous applications in engineering, 

from lossy compression of audio and images, to spectral methods for the 

numerical solution of partial differential equations. The use of cosine rather 

than sine functions is critical in these applications: for compression, it turns 

out that cosine functions are much more efficient, whereas for differential 

equations the cosines express a particular choice of boundary conditions. 

In particular, a DCT is a Fourier-related transform similar to the discrete 

Fourier transform (DFT), but using only real numbers. DCTs are equivalent to

DFTs of roughly twice the length, operating on real data with even symmetry

(since the Fourier transform of a real and even function is real and even), 

where in some variants the input and/or output data are shifted by half a 

sample. There are eight standard DCT variants, of which four are common. 

The most common variant of discrete cosine transform is the type-II DCT, 

which is often called simply “ the DCT”; its inverse, the type-III DCT, is 

correspondingly often called simply “ the inverse DCT” or “ the IDCT”. Two 

related transforms are the discrete sine transforms (DST), which is 

equivalent to a DFT of real and odd functions, and the modified discrete 

cosine transforms (MDCT), which is based on a DCT of overlapping data. 
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3. 2 DCT forms: 
Formally, the discrete cosine transform is a linear, invertible function F : RN -

> RN, or equivalently an invertible N Ã- N square matrix. There are several 

variants of the DCT with slightly modified definitions. The N real numbers x0,

…, xN-1 are transformed into the N real numbers X0, …, XN-1 according to 

one of the formulas: 

DCT-I 
Some authors further multiply the x0 and xN-1 terms by âˆš2, and 

correspondingly multiply the X0 and XN-1 terms by 1/âˆš2. This makes the 

DCT-I matrix orthogonal, if one further multiplies by an overall scale factor of

, but breaks the direct correspondence with a real-even DFT. 

The DCT-I is exactly equivalent, to a DFT of 2N âˆ’ 2 real numbers with even 

symmetry. For example, a DCT-I of N= 5 real numbers abcde is exactly 

equivalent to a DFT of eight real numbers abcdedcb, divided by two. 

Note, however, that the DCT-I is not defined for N less than 2. 

Thus, the DCT-I corresponds to the boundary conditions: xn is even around 

n= 0 and even around n= N-1; similarly for Xk. 

DCT-II 
The DCT-II is probably the most commonly used form, and is often simply 

referred to as “ the DCT”. 

This transform is exactly equivalent to a DFT of 4N real inputs of even 

symmetry where the even-indexed elements are zero. That is, it is half of the
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DFT of the 4N inputs yn, where y2n = 0, y2n + 1 = xn for , and y4N âˆ’ n = 

yn for 0 < n < 2N. 

Some authors further multiply the X0 term by 1/âˆš2 and multiply the 

resulting matrix by an overall scale factor of . This makes the DCT-II matrix 

orthogonal, but breaks the direct correspondence with a real-even DFT of 

half-shifted input. 

The DCT-II implies the boundary conditions: xn is even around n=-1/2 and 

even around n= N-1/2; Xk is even around k= 0 and odd around k= N. 

DCT-III 
Because it is the inverse of DCT-II (up to a scale factor, see below), this form 

is sometimes simply referred to as “ the inverse DCT” (“ IDCT”). 

Some authors further multiply the x0 term by âˆš2 and multiply the resulting

matrix by an overall scale factor of , so that the DCT-II and DCT-III are 

transposes of one another. This makes the DCT-III matrix orthogonal, but 

breaks the direct correspondence with a real-even DFT of half-shifted output.

The DCT-III implies the boundary conditions: xn is even around n= 0 and odd

around n= N; Xk is even around k=-1/2 and even around k= N-1/2. 

DCT-IV 
The DCT-IV matrix becomes orthogonal if one further multiplies by an overall

scale factor of . 
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A variant of the DCT-IV, where data from different transforms are 

overlapped, is called the modified discrete cosine transform (MDCT) (Malvar, 

1992). 

The DCT-IV implies the boundary conditions: xn is even around n=-1/2 and 

odd around n= N-1/2; similarly for Xk. 

DCT V-VIII 
DCT types I-IV are equivalent to real-even DFTs of even order, since the 

corresponding DFT is of length 2(Nâˆ’1) (for DCT-I) or 4N (for DCT-II/III) or 8N 

(for DCT-VIII). In principle, there are actually four additional types of discrete 

cosine transform, corresponding essentially to real-even DFTs of logically 

odd order, which have factors of N±½ in the denominators of the cosine 

arguments. 

Equivalently, DCTs of types I-IV imply boundaries that are even/odd around 

either a data point for both boundaries or halfway between two data points 

for both boundaries. DCTs of types V-VIII imply boundaries that even/odd 

around a data point for one boundary and halfway between two data points 

for the other boundary. 

However, these variants seem to be rarely used in practice. One reason, 

perhaps, is that FFT algorithms for odd-length DFTs are generally more 

complicated than FFT algorithms for even-length DFTs (e. g. the simplest 

radix-2 algorithms are only for even lengths), and this increased intricacy 

carries over to the DCTs as described below. 
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Inverse transforms 
Using the normalization conventions above, the inverse of DCT-I is DCT-I 

multiplied by 2/(N-1). The inverse of DCT-IV is DCT-IV multiplied by 2/N. The 

inverse of DCT-II is DCT-III multiplied by 2/N and vice versa. 

Like for the DFT, the normalization factor in front of these transform 

definitions is merely a convention and differs between treatments. For 

example, some authors multiply the transforms by so that the inverse does 

not require any additional multiplicative factor. Combined with appropriate 

factors of âˆš2 (see above), this can be used to make the transform matrix 

orthogonal. 

Multidimensional DCTs 
Multidimensional variants of the various DCT types follow straightforwardly 

from the one-dimensional definitions: they are simply a separable product 

(equivalently, a composition) of DCTs along each dimension. 

For example, a two-dimensional DCT-II of an image or a matrix is simply the 

one-dimensional DCT-II, from above, performed along the rows and then 

along the columns (or vice versa). That is, the 2d DCT-II is given by the 

formula (omitting normalization and other scale factors, as above): 

Two-dimensional DCT frequencies 

Technically, computing a two- (or multi-) dimensional DCT by sequences of 

one-dimensional DCTs along each dimension is known as a row-column 

algorithm. As with multidimensional FFT algorithms, however, there exist 
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other methods to compute the same thing while performing the 

computations in a different order. 

The inverse of a multi-dimensional DCT is just a separable product of the 

inverse(s) of the corresponding one-dimensional DCT(s), e. g. the one-

dimensional inverses applied along one dimension at a time in a row-column 

algorithm. 

The image to the right shows combination of horizontal and vertical 

frequencies for an 8 x 8 (N1 = N2 = 8) two-dimensional DCT. Each step from 

left to right and top to bottom is an increase in frequency by 1/2 cycle. For 

example, moving right one from the top-left square yields a half-cycle 

increase in the horizontal frequency. Another move to the right yields two 

half-cycles. A move down yields two half-cycles horizontally and a half-cycle 

vertically. The source data (8×8) is transformed to a linear combination of 

these 64 frequency squares. 

Chapter 4 

IMPLEMENTATION AND RESULTS 

4. 1 Introduction: 
In previous chapters (chapter 2 and chapter 3), we get the theoretical 

knowledge about the Principal Component Analysis and Discrete Cosine 

Transform. In our thesis work we have seen the analysis of both transform. 

To execute these tasks we chosen a platform called “ MATLAB”, stands for 

matrix laboratory. It is an efficient language for Digital image processing. 

The image processing toolbox in MATLAB is a collection of different MATAB 

https://assignbuster.com/performance-measure-of-pca-and-dct-for-images/



Performance measure of pca and dct for i... – Paper Example Page 24

functions that extend the capability of the MATLAB environment for the 

solution of digital image processing problems. [13] 

4. 2 Practical implementation of Performance analysis: 
As discussed earlier we are going to perform analysis for the two transform 

methods, to the images as, 

< 
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