Proportional reasoning project essay sample

ASSIGN BUSTER

Proportional reasoning -It is a form of mathematical reasoning which involves a sense of co-variation and comparison between two or more quantities.[1]

Ratio- Ratio denotes the magnitude of one quantity with respect to another. In simple words it is a comparison of two numbers. For any two numbers ' a' and ' b ' its ratio can be written asa: bora/b(read as a is to b).

For example - Ratio of hydrogen atoms to oxygen atoms in water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ is 2: 1 which means for every oxygen atom there are two hydrogen atoms.
$a: b=c: d$ or $a / b=c / d$

Proportion-A proportion is an equation with a ratio on each side. It is expressed as equality of ratios. For numbers a, b, c and d it could be written as

For example - Relation between height and weight of ' x ' and ' y '. Heights of x and y are 6 and 8 and weights are 60 and 80 respectively. Ratios of their respective height: weight are equal.

6: $60=8: 80=1: 10$. This means their height and weight are proportional to each other.

Percentage- It is way of expressing numbers as a fraction of 100. It is denoted by the sign\%.

For example - 30\% of balls in bag containing 60 balls are white. Find the number of white balls. This means we have to find $30 / 100 * 60=18$ white balls in the bag.

Cross product algorithm- It is used to find the value of the unknown variable in a given proportion by multiplying the denominator and the numerator on each side. For a proportiona: $\mathrm{b}=\mathrm{c}$: dit is written $\mathrm{asad}=\mathrm{bc}$.

For example - The ratio of Sam's earning to Jam's earning is 3: 5 while their expenses are in the ratio $1: 2$. Ratio of their savings is $2: 3$. Sam is able to save $\$ 3000$. So find earnings and expenses of both and savings of Jam.

Step 1 - Assign variablesx - is the earning, y is expenses.

Step 2 - Find the earnings and expenses of each in the variable form

$$
\begin{array}{ll}
\text { Sam's earnings }=3 x & \text { Sam's expenses }=y \\
\text { Jam's earnings }=5 x & \text { Jam's expenses }=2 y
\end{array}
$$

Step 3 - Find the savings = earning - expenses

Sam's savings $=3 x-y=3000$.

Jam's savings $=5 x-2 y$

Step 4 -Ratio of savings $=2: 3$ implies
$(3 x-y) /(5 x-2 y)=2 / 3$ implies
$3000 /(5 x-2 y)=2 / 3$

Step 5 -Use of cross product algorithm

3000 * 3 = 2* ($5 \mathrm{x}-2 \mathrm{y}$) implies
$5 x-2 y=4500$

Step 6 - Solution

Solving (1) and (2) we get
$x=1500 \quad y=1500$

Sam's earning $=4500 \quad$ Sam's expenses $=1500$

Jam's earning $=7500 \quad$ Jam's expenses $=3000$

Questions

1) Can ratios and proportions be negative?

A-Ratios can be negative. For eg- ratio of -3 to 5 is $-3 / 5$. But proportions can't be negative as the minus sign on both sides would cancel each other. For eg-$-3: 4=-6$: 8 here both ratios are equal as minus signs cancel each other.
2) What happens if a number is added or subtracted from both denominator and numerator in a ratio?

A- Suppose a ratio a : b is given. We have 2×2 matrix here.
$a>b \quad a$

Addition Ratio Ratio
of a decrease increases
number s. For eg. . For eg.
(x) Adding 1 Adding 2
$(a+x)$ / to the to the
$(b+x) \quad$ ratio $5 / 2$ ratio $1 / 2$

	(both d	
	\&n)	n)
	decrease	increases
	sits	its value
	value	from 0.5
	from 2.5	to 0.6

*d means denominator; n means numerator
3) How does a proportionality between 3 or more ratios denoted?

A-Suppose ratios $a: b, c: d$, e: f are proportional. They are denoted as $a / b=$ $\mathrm{c} / \mathrm{d}=\mathrm{e} / \mathrm{f}$.
4) Can fractions be expressed as ratios?

A-Yes. For eg- 3/5: 7/15. Solving it we get 3/5*15/7 = 9/7.
5) What is percentage increase or decrease?

A-An increase or decrease of ' x\%' in a given quantity ' a' results in a new value of $a(1+x / 100)$ or $a(1-x / 100)$. For eg a 30% increase in 200 gives new value as $200(1+30 / 100)=260$.

Note: There are no outside references other than the footnote in the first page.
[1] Richard Lesh, Thomas Post \& Merlyn Northern. Proportional Reasoning. http://cehd. umn. edu/

