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The Current Psychiatric Diagnosis: A Practice Subject to 
Debate 
Good health and well-being feature among the development goals set by the

United Nations members in their action plans to ensure peace and prosperity

by 2030 ( 1 ). In this context, promoting mental health constitutes an 

important target. Additional efforts for an accurate, early and objective 

diagnosis of mental disorders can only contribute to move forward in this 

direction. 

Classification systems—such as the Diagnostic and Statistical Manual of 

Mental Disorders (DSM), edited by the American Psychiatric Association 

(APA)—have been developed as a common language to conduct diagnosis in 

the most possible form of universality. However, these a-theoretical 

classifications lay down clinical descriptive criteria that can be open to 

subjective interpretation by clinicians. The APA tried to address this issue by 

fine-tuning the diagnostic criteria through the successive revisions of the 

DSM. However, each of these versions has always sparked lively debate in 

the community ( 2 , 3 ). The explosion in diagnostic categories was notably 

heavily criticized. On the one hand, this multiplication was considered as a 

way of integrating the scientific progress of psychopathology research and 

offering more exhaustive descriptions ( 4 ). On the other hand, it has been 

argued that this explosion of diagnostic categories not only answers a 

commercial objective, but is also a way to satisfy the society’s tendency to 

organize and annotate the mental phenomena ( 5 ). 
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A diagnosis based on neuromarkers may respond to the criticisms addressed

to the psychiatric classification systems ( 3 , 6 ). Here, the greatest challenge

remains to identify the relevant and discriminative markers that would reach

sufficient scientific consensus. 

A Sense of Progress Through Machine Learning 
Over the last decade, the application of Machine Learning (ML) to the 

psychiatric research has given the latter a new pulse ( 7 ). Indeed, in 

comparison to classical statistical approaches, ML provides outstanding 

capabilities for processing multivariate and multimodal data sets ( 8 ). 

The ADHD-200 competition was probably the catalyst for inspiring such 

interdisciplinary research ( 9 ). This international contest was intended to 

accelerate the understanding of Attention Deficit Hyperactivity Disorder 

(ADHD), by inviting competitors to develop an imaging-based diagnostic 

classifier with the highest possible performance. The ADHD-200 collection is 

the first in a series of data sets released in the context of a large-scale 

project for open data sharing. This valuable culture was promoted by the 

1000 Functional Connectomes Project (FCP), followed by the International 

Neuro-imaging Data sharing Initiative (INDI) ( 10 ). The will of opening 

research to the largest extent possible led to the sharing of software ( 11 ) 

and preprocessed data. The Autism Brain Imaging Data Exchange (ABIDE) is 

a notable example of the achievements of the INDI project. Related to 

Autism Spectrum Disorder (ASD), the ABIDE data set was released in two 

parts, including brain imaging data for over two thousand subjects 

aggregated across twenty-four worldwide imaging sites ( 12 , 13 ). The 
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analysis of such large data sets is expected to reduce inconsistency in 

research results, while the use of small sample sizes has demonstrated its 

limitations with variable levels of accuracy ( 14 ). 

There is no doubt that the availability of large, free and well-structured 

databases has been a positive incentive for their analysis through ML, for the

purpose of both knowledge extraction and diagnosis prediction. These 

capabilities were described in terms of their application to psychiatry ( 15 – 

19 ). We will here discuss the main technical challenges of this ML-guided 

research. 

Toward a Successful Conjunction of Psychiatry and 
Machine Learning 
Designing Explainable Solutions 
Over the years, the ML algorithms have been improved to be more and more

performant. In particular, deep learning methods advantageously capture 

complex patterns in data, therefore allowing to reach higher levels of 

accuracy ( 20 ). But concretely, clinicians expect more than just high 

accuracy from predictive systems, which opacity constitutes a constant 

criticism ( 16 , 19 ). The emerging domain of explainable Artificial 

Intelligence (xAI) is of particular interest in this respect ( 21 ). Indeed, 

explainability allows clinicians to choose to trust, or not, the 

recommendations ( 22 ). Moreover, it is well established that ML models tend

to reproduce the biases present in the training data sets, often caused by 

the unbalanced representation of the classification categories. Explainable 
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decision chains thus allow to control that the outputs are conform to ethical 

standards, and notably unsupported by any form of discrimination ( 23 , 24 ).

Most of the attempts in developing an xAI were focused on the design of 

post-hoc systems , i. e. black boxes completed by a component explaining 

predictions a posteriori ( 25 ). Post-hoc systems are thus thought as an 

interesting way of combining high accuracy and explainability. However, 

they remain questionable on (i) the veracity of their explanations, which are 

generated around the considered data point, and (ii) the consequent inability

to give a comprehensive picture of the model behavior ( 21 ). 

Concurrently, it has been shown that models, ranging from white to black 

boxes, all perform comparatively when trained on quality and meaningful 

data ( 21 , 26 ). This observation suggests a double perspective on the 

development of explainable ML systems. 

● Data preprocessing conditions the performance of any decision system. 

This initial phase in the ML process can consist of applying a transformation 

to the original training features, in order to make them more discriminative. 

The transformation is sometimes unavoidably achieved through the 

(complex) combination of the initial training features, which introduces some

interaction effects. Such a combination should thus be understood for the 

interpretation (even simplified) of the resulting features ( 27 , 28 ). 

● There also remain theoretical challenges to the improvement of the 

current predictive ML algorithms. A modern research avenue involves the 
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design of optimal logical models ( 21 ) such as decision trees, that may be 

algorithmically strengthened to perform similarly as black boxes. 

Efforts should thus be made both on data preprocessing and model design, 

in order to better address the need for explainability and transparency 

required by medical applications. 

Reconciling Theory and Data-Driven Approaches 
Two main methodologies exist for scientific modeling ( 29 ). 

● Theory-based models ; that are grounded on known scientific laws based 

on some parameters, and a low amount of data is generally sufficient to fit 

these parameters. 

● Data-based models ; that require large data sets for an automatic training 

procedure which is expected to yield general models, able to describe the 

related phenomenon. 

While theory-based methods are usually considered for the understanding of 

disorders, data-driven methods are rather considered for the design of 

clinical tools ( 16 ). A hybrid approach guided by data and theory would 

broaden the field of investigation, reconciling the existing scientific 

knowledge with elements extracted from data. The concept, which is not 

new, was highlighted in ( 16 ), and then properly formalized in ( 29 ) as the 

Theory-Guided Data Science (TGDS) paradigm. This principle should be 

encouraged in psychiatric research. Indeed, TGDS may be put in practice 

through the interaction with domain experts (i. e. psychiatrists, 

neuroscientists, neurologists) bringing their medical knowledge for feature 
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selection ( 16 ), or more globally to refine ML models in the frame of an 

expert-in-the-loop mechanism ( 30 ). The aforementioned explainability 

naturally fosters the implementation of a TGDS. 

Considering One-Class Classification 
Though they are mostly considered in the development of decision aid 

systems, Multi-Class Classification (MCC) algorithms are criticized for several 

reasons. Indeed, MCC does not address comorbidity appropriately since it 

considers the different diagnostic categories as mutually exclusive ( 16 ). In 

addition, MCC becomes more challenging in presence of unbalanced and 

noisy data sets ( 31 ). The domain of One-Class Classification (OCC) ( 32 ) 

covers a range of algorithms capable of describing a given class [e. g., a 

neuropathology ( 33 , 34 )], in such a way to reject cases that do not comply 

with this description. It is thus possible to use ensembles of one-class models

in order to test a patient for several conditions simultaneously. One-class 

classification also gets rid of the need for a balanced data set including 

training instances from each class, as required by the MCC scheme. Finally, 

through its very nature, OCC can efficiently rule out noise, and specifically 

class noise which is usually located on the class boundaries ( 31 , 35 ). 

Several OCC tools are already available for clinical use, despite being mainly 

targeted towards neurological disorders ( 36 ). Hence, OCC deserves greater 

attention to be further developed in psychiatric research. Additional efforts 

for algorithmic improvements would be particularly worth considering in the 

context of explainable AI. 
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Addressing the Question of Heterogeneity in Data 
Though outstanding, the efforts for large-scale data gathering across several 

sites yield disparities in terms of demographics and experimental protocols (

22 ). The homogenization of experimental protocols, and the design of 

appropriate validation procedures are respectively thought as ways for 

achieving and assessing generalizability ( 18 , 19 ). The question of the 

extent to which this generalizability needs to be achieved deserves to be 

discussed, and probably requires a scientific consensus to provide a clear 

research direction. Indeed, the available financial and technical means for 

medical assessment and data may differ from a region to another. 

Furthermore, psychiatric conditions can be characterized by clinical and/or 

neurobiological heterogeneity, the latter being also established in healthy 

controls ( 37 ). In this case, a thorough analysis may help to consider the 

best modeling strategy. For example, a ML framework can be implemented 

to perform diagnosis prediction in different levels, i. e., to detect a disorder 

first, and the disorder subtype then ( 38 , 39 ). In ( 33 ), the authors focused 

on the description of ASD through OCC, since controls showed high 

neurobiological disparity. Moreover, ahead of the ML process, the 

experimental protocol should not necessarily be aligned with the DSM 

diagnostic categories. Indeed, these diagnostic labels are heterogeneous and

derived from traditional assessments conducted by clinicians ( 40 , 41 ). The 

Research Domain Criteria (RDoC) framework was introduced by the National 

Institute of Mental Health to alleviate this issue ( 42 , 43 ). The RDoC orients 

the study of mental illnesses towards domains of human functioning 

described at different levels, rather than towards symptoms . The lowest 
https://assignbuster.com/at-the-crossroads-between-psychiatry-and-
machine-learning-insights-into-paradigms-and-challenges-for-clinical-
applicability/



 At the crossroads between psychiatry and... – Paper Example  Page 9

level relates to units of analysis , suggesting relevant biological, genetic and 

physiological investigation markers ( 43 ). 

Encouraging Scientific Reproducibility 
The psychiatric domain has witnessed a significant increase in ML-based 

studies, along with a diversification of the modalities considered for data 

processing and modeling ( 44 ). It is therefore imperative to apply guidelines 

that ensure reproducibility; recommendations are provided in ( 44 ). The 

appropriate choice of procedures for model training and evaluation, as well 

as the availability of source code/data should notably be encouraged. Yet, a 

recent study highlighted that these aspects are often lacking: it appeared 

that 50% of studies do not share software, while 36% do not give access to 

data ( 45 ). 

More specifically in the context of open data sharing, a standard 

segmentation of the data collections into training and test sets would 

reinforce reproducibility ( 40 ). On the occasion of the ADHD-200 

competition, training and test sets were kept separately in order to allow 

respectively the development and the assessment of the predictive models 

developed by the competing teams. Since then, these data subsets have 

mostly been used in their initial form, which makes it easy to report the 

evolution of the progress achieved on the prediction of ADHD. The same 

cannot be said for other INDI data sets such as the ABIDE collection, where 

the segmentation of data is a choice made for each research study. This 

great disparity in the definition of the data subsets therefore makes it 

difficult to track the research progress on a given mental disorder. 
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Conclusion 
Through the present perspective, we wished to draw attention on key 

principles for the design of Machine Learning (ML) solutions able to help 

clinicians to diagnose mental disorders. Our consideration addressed some 

main criticisms found in the literature about ML-based systems for clinical 

applications. It appears that a form of explainable and knowledge-guided 

data science will certainly help in the design of transparent mechanisms 

making sense to clinicians. The use of one-class classification algorithms 

allows to describe each neuropathological condition separately, and may 

better take into consideration comorbidity aspects. These practices are 

worth being encouraged, even though they are currently timidly 

implemented. Amid these capabilities, research will undoubtedly accelerate 

in addressing the question of heterogeneity in data and in encouraging 

scientific reproducibility. All these endeavors are definitely promising for the 

future of psychiatric research. 
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