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Characteristics  Atomicity  Main  article:  Atomicity  (database  systems)

Atomicity requires that each transaction is " all or nothing": if one part of the

transaction fails, the entire transaction fails, and the database state is left

unchanged. An atomic system must guarantee atomicity in each and every

situation, including power failures, errors, and crashes. To the outside world,

a  committed  transaction  appears  (by  its  effects  on  the  database)  to  be

indivisible  ("  atomic"),  and  an  aborted  transaction  does  not  happen.

Consistency Main article: Consistency (database systems) 

The  consistency  property  ensures  that  any  transaction  will  bring  the

database from one valid state to another. Any data written to the database

must  be valid  according  to  all  defined rules,  including but  not  limited to

constraints, cascades, triggers, and any combination thereof. This does not

guarantee  correctness  of  the  transaction  in  all  ways  the  application

programmer might  have wanted (that  is  the responsibility  of  application-

level  code)  but  merely  that  any  programming  errors  do  not  violate  any

defined rules. Isolation Main article: Isolation (database systems) 

The isolation property ensures that the concurrent execution of transactions

results  in  a  system  state  that  would  be  obtained  if  transactions  were

executed serially, i.  e. one after the other. Providing isolation is the main

goal of concurrency control. Depending on concurrency control method, the

effects of an incomplete transaction might not even be visible to another

transaction.  [citation  needed]  Durability  Main  article:  Durability  (database

systems) Durability means that once a transaction has been committed, it

will  remain  o,  even  in  the  event  of  power  loss,  crashes,  or  errors.  In  a

relational database, for instance, once a group of SQL statements execute,
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the results  need to be stored permanently (even if  the database crashes

immediately thereafter). To defend against power loss, transactions (or their

effects) must be recorded in a non-volatile memory. Examples The following

examples  further  illustrate  the  ACID  properties.  In  these  examples,  the

database table has two fields, A and B, in two records. An integrity constraint

requires that the value in A and the value in B must sum to 100. 

The following SQL code creates a table as described above: CREATE TABLE

acidtest (A INTEGER, B INTEGER CHECK (A + B = 100)); Atomicity failure

Assume that a transaction attempts to subtract 10 from A and add 10 to B.

This is a valid transaction, since the data continue to satisfy the constraint

after it has executed. However, assume that after removing 10 from A, the

transaction is unable to modify B. If the database retained A's new value,

atomicity and the constraint would both be violated. Atomicity requires that

both parts of this transaction, or neither, be complete. 

Consistency failure Consistency is a very general term which demands that

the  data  must  meet  all  validation  rules.  In  the  previous  example,  the

validation is a requirement that A + B = 100. Also, it may be inferred that

both  A and B must  be integers.  A valid  range for  A and B may also be

inferred. All validation rules must be checked to ensure consistency. Assume

that a transaction attempts to subtract 10 from A without altering B. Because

consistency is checked after each transaction, it is known that A + B = 100

before the transaction begins. 

If the transaction removes 10 from A successfully, atomicity will be achieved.

However, a validation check will show that A + B = 90, which is inconsistent

with the rules of the database. The entire transaction must be cancelled and
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the affected rows rolled back to their pre-transaction state. If there had been

other constraints, triggers, or cascades, every single change operation would

have been checked in the same way as above before the transaction was

committed.  Isolation  failure  To  demonstrate  isolation,  we  assume  two

transactions execute at the same time, each attempting to modify the same

data. 

One of  the two must wait  until  the other completes in order to maintain

isolation. Consider two transactions. T1 transfers 10 from A to B. T2 transfers

10 from B to A. Combined, there are four actions: T1 subtracts 10 from A T1

adds 10 to B. T2 subtracts 10 from B T2 adds 10 to A. If these operations are

performed in order, isolation is maintained, although T2 must wait. Consider

what  happens  if  T1  fails  half-way  through.  The  database  eliminates  T1's

effects, and T2 sees only valid data. By interleaving the transactions, the

actual order of actions might be: A - 10, B - 10, B + 10, A + 10. 

Again, consider what happens if T1 fails. T1 still subtracts 10 from A. Now, T2

adds 10 to A restoring it to its initial value. Now T1 fails. What should A's

value be? T2 has already changed it. Also, T1 never changed B. T2 subtracts

10 from it. If T2 is allowed to complete, B's value will be 10 too low, and A's

value will  be unchanged, leaving an invalid database. This is  known as a

write-write failure, because two transactions attempted to write to the same

data field. Durability failure Assume that a transaction transfers 10 from A to

B. It removes 10 from A. It then adds 10 to B. 

At this point, a " success" message is sent to the user. However, the changes

are still queued in the disk buffer waiting to be committed to the disk. Power

fails and the changes are lost. The user assumes (understandably) that the
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changes have been made.  Implementation Processing a transaction often

requires a sequence of operations that is subject to failure for a number of

reasons. For instance, the system may have no room left on its disk drives,

or it may have used up its allocated CPU time. There are two popular families

of techniques: write ahead logging and shadow paging. 

In both cases, locks must be acquired on all information that is updated, and

depending on the level of isolation, possibly on all data that is read as well.

In  write  ahead  logging,  atomicity  is  guaranteed  by  copying  the  original

(unchanged) data to a log before changing the database. [dubious – discuss]

That allows the database to return to a consistent state in the event of a

crash. In shadowing, updates are applied to a partial copy of the database,

and the new copy is activated when the transaction commits. Locking vs

multiversioning  Many  databases  rely  upon  locking  to  provide  ACID

capabilities. 

Locking means that the transaction marks the data that it accesses so that

the DBMS knows not to allow other transactions to modify it until the first

transaction  succeeds  or  fails.  The  lock  must  always  be  acquired  before

processing data, including data that are read but not modified. Non-trivial

transactions typically require a large number of locks, resulting in substantial

overhead as well as blocking other transactions. For example, if user A is

running a transaction that has to read a row of data that user B wants to

modify, user B must wait until user A's transaction completes. 

Two  phase  locking  is  often  applied  to  guarantee  full  isolation.  [citation

needed]  An  alternative  to  locking  is  multiversion  concurrency  control,  in

which the database provides each reading transaction the prior, unmodified
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version of  data that is  being modified by another active transaction.  This

allows readers to operate without acquiring locks. I. e. , writing transactions

do not block reading transactions, and readers do not block writers. Going

back to the example, when user A's transaction requests data that user B is

modifying, the database provides A with the version of that data that existed

when user B started his transaction. 

User  A  gets  a  consistent  view  of  the  database  even  if  other  users  are

changing data. One implementation relaxes the isolation property, namely

snapshot isolation. Distributed transactions Guaranteeing ACID properties in

a distributed transaction across a distributed database where no single node

is  responsible  for  all  data  affecting  a  transaction  presents  additional

complications.  Network  connections  might  fail,  or  one  node  might

successfully complete its part of the transaction and then be required to roll

back its changes, because of a failure on another node. 

The two-phase commit protocol (not to be confused with two-phase locking)

provides  atomicity  for  distributed  transactions  to  ensure  that  each

participant in the transaction agrees on whether the transaction should be

committed or not. [citation needed] Briefly, in the first phase, one node (the

coordinator) interrogates the other nodes (the participants) and only when

all reply that they are prepared does the coordinator, in the second phase,

formalize the transactio 
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