
Atomicity

https://assignbuster.com/atomicity/
https://assignbuster.com/

Atomicity – Paper Example Page 2

Characteristics Atomicity Main article: Atomicity (database systems)

Atomicity requires that each transaction is " all or nothing": if one part of the

transaction fails, the entire transaction fails, and the database state is left

unchanged. An atomic system must guarantee atomicity in each and every

situation, including power failures, errors, and crashes. To the outside world,

a committed transaction appears (by its effects on the database) to be

indivisible (" atomic"), and an aborted transaction does not happen.

Consistency Main article: Consistency (database systems)

The consistency property ensures that any transaction will bring the

database from one valid state to another. Any data written to the database

must be valid according to all defined rules, including but not limited to

constraints, cascades, triggers, and any combination thereof. This does not

guarantee correctness of the transaction in all ways the application

programmer might have wanted (that is the responsibility of application-

level code) but merely that any programming errors do not violate any

defined rules. Isolation Main article: Isolation (database systems)

The isolation property ensures that the concurrent execution of transactions

results in a system state that would be obtained if transactions were

executed serially, i. e. one after the other. Providing isolation is the main

goal of concurrency control. Depending on concurrency control method, the

effects of an incomplete transaction might not even be visible to another

transaction. [citation needed] Durability Main article: Durability (database

systems) Durability means that once a transaction has been committed, it

will remain o, even in the event of power loss, crashes, or errors. In a

relational database, for instance, once a group of SQL statements execute,

https://assignbuster.com/atomicity/

Atomicity – Paper Example Page 3

the results need to be stored permanently (even if the database crashes

immediately thereafter). To defend against power loss, transactions (or their

effects) must be recorded in a non-volatile memory. Examples The following

examples further illustrate the ACID properties. In these examples, the

database table has two fields, A and B, in two records. An integrity constraint

requires that the value in A and the value in B must sum to 100.

The following SQL code creates a table as described above: CREATE TABLE

acidtest (A INTEGER, B INTEGER CHECK (A + B = 100)); Atomicity failure

Assume that a transaction attempts to subtract 10 from A and add 10 to B.

This is a valid transaction, since the data continue to satisfy the constraint

after it has executed. However, assume that after removing 10 from A, the

transaction is unable to modify B. If the database retained A's new value,

atomicity and the constraint would both be violated. Atomicity requires that

both parts of this transaction, or neither, be complete.

Consistency failure Consistency is a very general term which demands that

the data must meet all validation rules. In the previous example, the

validation is a requirement that A + B = 100. Also, it may be inferred that

both A and B must be integers. A valid range for A and B may also be

inferred. All validation rules must be checked to ensure consistency. Assume

that a transaction attempts to subtract 10 from A without altering B. Because

consistency is checked after each transaction, it is known that A + B = 100

before the transaction begins.

If the transaction removes 10 from A successfully, atomicity will be achieved.

However, a validation check will show that A + B = 90, which is inconsistent

with the rules of the database. The entire transaction must be cancelled and

https://assignbuster.com/atomicity/

Atomicity – Paper Example Page 4

the affected rows rolled back to their pre-transaction state. If there had been

other constraints, triggers, or cascades, every single change operation would

have been checked in the same way as above before the transaction was

committed. Isolation failure To demonstrate isolation, we assume two

transactions execute at the same time, each attempting to modify the same

data.

One of the two must wait until the other completes in order to maintain

isolation. Consider two transactions. T1 transfers 10 from A to B. T2 transfers

10 from B to A. Combined, there are four actions: T1 subtracts 10 from A T1

adds 10 to B. T2 subtracts 10 from B T2 adds 10 to A. If these operations are

performed in order, isolation is maintained, although T2 must wait. Consider

what happens if T1 fails half-way through. The database eliminates T1's

effects, and T2 sees only valid data. By interleaving the transactions, the

actual order of actions might be: A - 10, B - 10, B + 10, A + 10.

Again, consider what happens if T1 fails. T1 still subtracts 10 from A. Now, T2

adds 10 to A restoring it to its initial value. Now T1 fails. What should A's

value be? T2 has already changed it. Also, T1 never changed B. T2 subtracts

10 from it. If T2 is allowed to complete, B's value will be 10 too low, and A's

value will be unchanged, leaving an invalid database. This is known as a

write-write failure, because two transactions attempted to write to the same

data field. Durability failure Assume that a transaction transfers 10 from A to

B. It removes 10 from A. It then adds 10 to B.

At this point, a " success" message is sent to the user. However, the changes

are still queued in the disk buffer waiting to be committed to the disk. Power

fails and the changes are lost. The user assumes (understandably) that the

https://assignbuster.com/atomicity/

Atomicity – Paper Example Page 5

changes have been made. Implementation Processing a transaction often

requires a sequence of operations that is subject to failure for a number of

reasons. For instance, the system may have no room left on its disk drives,

or it may have used up its allocated CPU time. There are two popular families

of techniques: write ahead logging and shadow paging.

In both cases, locks must be acquired on all information that is updated, and

depending on the level of isolation, possibly on all data that is read as well.

In write ahead logging, atomicity is guaranteed by copying the original

(unchanged) data to a log before changing the database. [dubious – discuss]

That allows the database to return to a consistent state in the event of a

crash. In shadowing, updates are applied to a partial copy of the database,

and the new copy is activated when the transaction commits. Locking vs

multiversioning Many databases rely upon locking to provide ACID

capabilities.

Locking means that the transaction marks the data that it accesses so that

the DBMS knows not to allow other transactions to modify it until the first

transaction succeeds or fails. The lock must always be acquired before

processing data, including data that are read but not modified. Non-trivial

transactions typically require a large number of locks, resulting in substantial

overhead as well as blocking other transactions. For example, if user A is

running a transaction that has to read a row of data that user B wants to

modify, user B must wait until user A's transaction completes.

Two phase locking is often applied to guarantee full isolation. [citation

needed] An alternative to locking is multiversion concurrency control, in

which the database provides each reading transaction the prior, unmodified

https://assignbuster.com/atomicity/

Atomicity – Paper Example Page 6

version of data that is being modified by another active transaction. This

allows readers to operate without acquiring locks. I. e. , writing transactions

do not block reading transactions, and readers do not block writers. Going

back to the example, when user A's transaction requests data that user B is

modifying, the database provides A with the version of that data that existed

when user B started his transaction.

User A gets a consistent view of the database even if other users are

changing data. One implementation relaxes the isolation property, namely

snapshot isolation. Distributed transactions Guaranteeing ACID properties in

a distributed transaction across a distributed database where no single node

is responsible for all data affecting a transaction presents additional

complications. Network connections might fail, or one node might

successfully complete its part of the transaction and then be required to roll

back its changes, because of a failure on another node.

The two-phase commit protocol (not to be confused with two-phase locking)

provides atomicity for distributed transactions to ensure that each

participant in the transaction agrees on whether the transaction should be

committed or not. [citation needed] Briefly, in the first phase, one node (the

coordinator) interrogates the other nodes (the participants) and only when

all reply that they are prepared does the coordinator, in the second phase,

formalize the transactio

https://assignbuster.com/atomicity/

	Atomicity

