Mean(y) $=-0.4088=$ x essays example

Education

ASSIGN BUSTER

Assignment 7

1. So that we will know where 50% of his subjects are located (which is below the median), and the other 50% of his subjects are located (which is above the median).
2.

$>y<-\operatorname{rnorm}(16,0,2)$
$>$ hist(y)
$z=X-\mu \sigma n=-0.4088-0.5216=-1.818$
3.
$>x<-\operatorname{rnorm}(25,0,2)$
$>\operatorname{hist}(x)$
$>$ mean(x)
[1] -0. 660643
$t=X-\mu s d n=-0.660643-0.5225 \approx-2.90$
4. Number of degrees of freedom $=25-1=24$
5.
t. test(x, alternative=" two. sided", mu=0.25)

One Sample t-test

data: x
$t=-2.5001, d f=24, p$-value $=0.01965$
alternative hypothesis: true mean is not equal to 0.25
95 percent confidence interval:
-1. 412403360.09111734
sample estimates:
mean of x
-0. 660643
The p-value is $0.01965<0.05=>$ null hypothesis is rejected.
6. The confidence interval means that there is a 95% chance that the true value is within the interval.
7. $>$ wilcox. test($x, m u=0.2$)

Wilcoxon signed rank test

data: x
$V=85, p$-value $=0.03668$
alternative hypothesis: true location is not equal to 0.2
$0.03668>0.05=>$ null hypothesis is not rejected.
8.

Test statistics, $z=5-02.4 \approx 2.08$
9. I take 95% confidence limit to test for null hypothesis. So, probability of it being true is 0.95 .
10. Sample size >30.
11. The uniform distribution should be between -20 and 20 since the maximum is 40 units away from the minimum, and the null hypothesis is that the mean is zero. From probability to get anything from 0 to 20 in the uniform distribution is 50%. So, for 95% confidence limits, first divide 95 by 2 to get $95 / 2=47.5 \%$. Then, ask what is the value V within 0 to 20 , which will give us a 47.5% probability to get anything from 0 to V in this uniform distribution.

So, $V=(47.5 / 50)(20-0)=19$

So, the $\mathbf{9 5 \%}$ confidence limits is $\mathbf{- 1 9 , 1 9}$.

12. It tends to become more like the normal distribution, and with a higher peak.
