Inventory and annual holding cost

ASSIGN BUSTER

1. Your firm uses a continuous review system and operates 52 weeks per year. One of the SKUs has the following characteristics. Demand $(\mathrm{D})=$ 20,

Ordering
000

Holding
cost
(H)

Lead time
(L) units/year
Cycle-service level $=\quad 95 \%$

Demand is normally distributed with a standard deviation of weekly demand of 100 units. The current on-hand inventory is 1.040 units with no scheduled receipts and no backorders. 1. Calculate the item's EOQ. What is the average time, in weeks between orders? EOQ $=$ (2DS)/H

- $E O Q=(2 * 20000 * 40) / 2$
- $E O Q=800000$
- $E O Q=894.43894$
- TBO = (EOQ/D)*52weeks
- TBO = (894/20000)*52weeks
- TBO $=(0.0447) * 52$ weeks
- $\mathrm{TBO}=2.32442 .32$ weeks

2. Find the safety stock and reorder point that provides a 95% cycle-service level. Safety stock $=Z^{*}$ (standard deviation of demand during the lead time) Z for 95% service level is 1.64

- Safety stock = 1. 64*(2*100)
- Safety stock $=328$ units

Reorder point $=($ Average demand during lead time $)+($ Safety Stock $)$
Reorder point $=((20000 / 52$ weeks $) * 2)+328=1097.231097$
3. For these policies, what are the annual costs of holding the cycle inventory and placing orders?

Annual holding cost $=($ Average cycle inventory)*(Unit holding cost)

Annual holding cost $=($ Average Lot size/2)*(Unit holding cost)

- Annual holding cost $=((20000 / 52$ weeks $) * 2.32$ weeks $) / 2 * 2$
- Annual holding cost $=(892.30892 / 2) * 2$
- Annual holding cost $=446 * 2=\$ 892$
- Annual ordering cost $=$ (Number of orders/year)*(Ordering cost)
- Annual
ordering cost $=(\text { Demand } / \text { Average lot size })^{*}($ Ordering cost $)$
- Annual ordering costs $=(20000 / 892)^{*}(40)$
- Annual ordering costs $=22.42 * 40=\$ 896.8$

4. Withdrawal of 15 units just occurred. Is it time to reorder? If so, how much should be ordered?

Inventory position $=$ on hand inventory + schedule receipts - backorders Inventory position $=1040+15+0=1055$

IP (1055) < R (1097) so new order must be placed

Order quantity: Target inventory level - Inventory position

Target inventory level $=$ Average demand during the protection interval + Safety stock Target inventory level =

[^0]
[^0]: Target inventory

