Study guide on mole fraction assignment

ASSIGN BUSTER

Mole Fraction Return to Solutions Menu The mole fraction is: moles of target substance divided by total moles involved The symbol for the mole fraction is the lower-case Greek letter chi, X. You will often see it with a subscript: xsolute is an example. Example \#1:0. 100 mole of NaCl is dissolved into 100. 0 grams of pure H 20 . What is the mole fraction of NaCl ? Solution: 100. 0 $\mathrm{g} / 18.0 \mathrm{~g}$ rnoF1 $=5.56 \mathrm{~mol}$ of H 20 Add that to the 0.100 mol of $\mathrm{NaCl}=5$. $56+0.100=5.66 \mathrm{~mol}$ total Mole fraction of $\mathrm{NaCl}=0.100 \mathrm{~mol} / 5.66 \mathrm{~mol}$ $=0.018 \mathrm{What}$ is the mole fraction of the H 20 ? $5.56 \mathrm{~mol} / 5.6 \mathrm{~mol}=0.82$ By the way, another way to fgure out the last substance is 1.00 minus (the total of all other mole fractions). In this case $1.00-0.018=0.982$. Remember that all the mole fractons in the solution should total up to one. Notice that the mole fraction has no units on it and is written as a decimal value. Do not change it to percent. Note of caution: you could see the term " mole percent. " It is simply the mole fraction mltiplied by 100. For example, in the problem Just below, the mole fraction of cinnamic acid is 0.2885 . Its mole percent would be 28.85%. The ChemTeam advises gainst the use of the tem " mole percent. However, do what your teacher desires you to do. Example \#2: A solution is prepared by mixing 25.0 g of water, H 20 , and 25 . 0 gof ethanol, C 2 H 50 H . Determine the mole fractions of each substance. Solution: 1) Determine the moles of each substance: H20 $25.0 \mathrm{~g} / 18.0 \mathrm{gmol}$ $=1.34 \mathrm{~mol} \mathrm{C} 2 \mathrm{H} 50 \mathrm{H} 25.0 \mathrm{~g} / 46.07 \mathrm{vmol}=0.543 \mathrm{~mol} 2)$ Determine mole fractions: $\mathrm{H} 201.34 \mathrm{~mol} /(1.34 \mathrm{~mol}+0.543 \mathrm{~mol})=0.71 \mathrm{C} 2 \mathrm{H} 50 \mathrm{H} 0.543$ $\mathrm{mol} /(1.34 \mathrm{~mol}+0.543 \mathrm{~mol})=0.29$ Example \#3: A solution contains 10.0 g pentane, 10.0 g hexane and 10.0 g benzene. What is the mole fraction of hexane?

Solution: 1) You need to determine the moles of pentane, hexane and benzene: to do this, you need the molecular weights. Here are the formulas: pentane: C 5 H 12 hexane: C 6 H 14 benzene: C 6 H 62 2) When you have the moles of each, add them together. 3) Then, divide the moles of hexane by the total. Calculate the mole fractions of sugar and water. Solution: 1) Molality is moles solute / kg of solvent. Therefore we know our solution is: $1.62 \mathrm{~mol} \mathrm{Cl} 21-$ $4220111.00 \mathrm{~kg}=1000 \mathrm{~g}$ of water 2) Calculate the moles of water present: $1000 \mathrm{~g} / 18.0152 \mathrm{gmol}=55.50868 \mathrm{~mol} 3)$ Determine the mole fraction of the sugar: $1.62 \mathrm{~mol} /(1.2 \mathrm{~mol}+55.0868 \mathrm{~mol})=0.028357=0.0284$ (to three sf) 4) you can calculate the mole fraction of the water by subtraction. Example \#5: How many grams of water must be used to dissolve 100. 0 grams of sucrose (Cl 2 H 22011) to prepare a 0.020 mole fraction of sucrose in the solution? Solution: 1) Determine moles of sucrose: $100.0 \mathrm{~g} / 342$. $2948 \mathrm{gmol}=0.292145835 \mathrm{~mol} 2)$ Determine moles of water required to make the solution 0.020 mole fraction of sucrose: $0.020=0.292 /(0.292$ $+x)(0.020)(0.292+X)=0.2920 .00584+0.02 X=0.292=0.28616 x$ $=14.308 \mathrm{~mol}$ of H 20 Comment: you can also do this: 0.292 to 0.2 as x to 0.8 3) Determine grams of water: $14.308 \mathrm{~mol} \times 18.015 \mathrm{gmol}=258.0 \mathrm{~g}$ Example \#6: Surprisingly, water (in the form of ice) is slightly soluble in liquid nitrogen. At -196 oc, (the boiling point of liquid nitrogen) the mole fraction of water in a saturated solution is $1.00 \times 10-5$. Compute the mass of water that can dissolve in 1.00 kg of boiling liquid nitrogen. Solution: 1) Use the definition of mole fraction to set up the following: xwater = moles water / $($ moles water + moles nitrogen $) 1.00 \times 10-5=x /(X+71.3944041)$ I'm going to carry some guard digits until the end of the calculation. 2) Some algebra: 1 .

OOX 7. $139440411 \times 10-4=\times 0.99999 x=7.139440411 \times 10-4 x=7$.
$139511806 \times 10-4 \mathrm{~mol}$ of H 20 3) Calculate grams of water from moles of water: $7.139511806 \times 10-4 \mathrm{~mol} \times 18.0152 \mathrm{gmol}=1.2862 \times 10-2 \mathrm{~g} 1.29 \times$ 10-2 g (to three sf) Example \#7: What is the mole fraction of cinnamic acid in a mixture that is 50.0% weight urea in cinnamic acid (urea $=60.06$ $\mathrm{g} / \mathrm{mol}$; cinnamic acid $=148.16 \mathrm{~g} / \mathrm{mol}) 50.0 \mathrm{~g}$ is cinnamic 2) Convert grams to moles: urea: $50.0 \mathrm{~g} / 60.06 \mathrm{gmol}=0.8325 \mathrm{~mol}$ cinnamic acid: $50.0 \mathrm{~g} /$ 148. $16 \mathrm{~g} / \mathrm{mol}=0.3375 \mathrm{~mol} 3$) Determine mole fraction of cinnamic acid: 0 . $3375 \mathrm{~mol} / 1.1700 \mathrm{~mol}=0.2885$

