
Virtual-future-
computer essay

https://assignbuster.com/virtual-future-computer-essay/
https://assignbuster.com/virtual-future-computer-essay/
https://assignbuster.com/

Virtual-future-computer essay – Paper Example Page 2

Each of these virtual machines was sufficiently similar to the underlying

physical machine to run existing software unmodified. At the time, general-

purpose computing was the domain of large, expensive mainframe

hardware, and users found that Vim’s provided a compelling way to

multiplex such a scarce resource among multiple applications. Thus, for a

brief period, this technology flourished both in industry and in academic

research. The sass and sass, however, brought modern multitasking

operating systems and a simultaneous drop in hardware cost, which eroded

the value of Vim’s.

As mainframes gave way to minicomputers and then PC’s, Vim’s disappeared

to the extent that computer architectures no longer provided the necessary

hardware to implement them efficiently. By the late 1 sass, neither

academics nor Industry practitioners viewed Vim’s as much more than a

historical curiosity. Fast forwarding to 2005, Vim’s are again a hot topic in

academia and industry: Venture capital firms are competing to fund startup

companies touting their virtual-machine-based technologies. Intel. MAD, Sun

Microsystems, and MM are developing fertilization strategies that target

markets with revenues in the billions and growing.

In research labs and universities, searchers are developing approaches

based on virtual machines to solve mobility, security, and manageability

problems. What happened between the Vim’s essential retirement and its

current resurgence? In the sass, Stanford university researchers began to

look at the potential of virtual machines to overcome difficulties that

hardware and operating system limitations imposed: This time the problems

https://assignbuster.com/virtual-future-computer-essay/

Virtual-future-computer essay – Paper Example Page 3

stemmed from massively parallel processing (MAP) machines that were

difficult to program and could not run existing operating systems.

With virtual machines, researchers found they could make these unwieldy

architectures look sufficiently reject came the people and ideas that

underpinned Ovenware Inc. (www. Ovenware. Com), the original supplier of

Vim’s for commodity computing hardware. The implications of having a VIM

for commodity platforms intrigued both researchers and entrepreneurs. WHY

THE REVIVAL? Ironically, the capabilities of modern operating systems and

the drop in hardware cost-? the very 0018-9162/05/$20. 0 2005 IEEE

Computer Published by the IEEE Computer Society combination that had

obviated the use of Vim’s during the sass-? began to cause problems that

researchers thought Vim’s might solve. Less expensive hardware had De to a

proliferation of machines, but these machines were often underused and

incurred significant space and management overhead. And the increased

functionality that had made operating systems more capable had also made

them fragile and vulnerable. To reduce the effects of system crashes and

breaking, system administrators again resorted to a computing model with

one application running per machine.

This in turn increased hardware requirements, imposing significant cost and

management overhead. Moving applications that once ran on many physical

machines into virtual machines and consolidating those virtual machines

onto Just a ewe physical platforms increased use efficiency and reduced

space and management costs. Thus, the Vim’s ability to serve as a means of

multiplexing hardware-? this time in the name of server consolidation and

utility computing-? again led it to prominence.

https://assignbuster.com/virtual-future-computer-essay/

Virtual-future-computer essay – Paper Example Page 4

Moving forward, a VIM will be less a vehicle for multitasking, as it was

originally, and more a solution for security and reliability. In many ways

Vim’s give operating systems developers another opportunity to develop

functionality no longer practical in today’s complex and ossified operating

systems, where innovation moves at a geologic pace. Functions like

migration and security that have proved difficult to achieve in modern

operating systems seem much better suited to implementation at the VIM

layer.

In this context, Vim’s provide a backward-capability path for deploying

innovative operating system solutions, while providing the ability to safely

pull along the existing software base. App App Operating system Operating

system Virtual machine monitor Hardware DECOUPLING HARDWARE AND

SOFTWARE As Figure 1 shows, the VIM decouples the software from the

hardware by forming a level of indirection between the software running in

the virtual machine (layer above he VIM) and the hardware.

This level of indirection lets the VIM exert tremendous control over how

guest operating systems (Suggests)-? operating systems running inside a

virtual machine-? use hardware resources. A VIM provides a uniform view of

underlying hardware, making machines from different vendors with different

1/0 subsystems look the same, which means that virtual machines can run

on any available computer. Thus, instead of worrying about individual

machines with tightly coupled hardware and software dependencies,

administrators can view hardware simply as a pool of resources that can run

arbitrary services on demand.

https://assignbuster.com/virtual-future-computer-essay/

Virtual-future-computer essay – Paper Example Page 5

Because the VIM also offers complete encapsulation of a virtual machine’s

software state, the VIM layer can map and remap virtual machines to

available hardware resources at will and even migrate virtual machines

across machines. Load balancing among a collection of machines thus

becomes trivial, and there is a robust model for dealing with hardware

failures or for scaling systems. When a computer fails and must go offline or

when a new machine comes online, the VIM layer can simply remap virtual

machines accordingly.

Virtual machines are also easy to replicate, which lets administrators bring

new services online as needed. Encapsulation also means that

administrators can suspend virtual machines and resume them at arbitrary

times or checkpoint them and roll them back to a previous execution state.

With this general-purpose undo capability, systems can easily recover from

crashes or configuration errors. Encapsulation also supports a very general

mobility model, since users can copy a suspended virtual machine over a

network or store and transport it on removable media.

The VIM can also provide total mediation of all interactions between the

virtual machine and underlying hardware, thus allowing strong isolation

between ritual machines and supporting the multiplexing of many virtual

machines on a single hardware platform. The VIM can then consolidate a

collection of virtual machines with low resources onto a single computer,

thereby lowering hardware costs and space requirements. Strong isolation is

also valuable for reliability and security. Applications that previously ran

together on one machine can now separate into different virtual machines.

https://assignbuster.com/virtual-future-computer-essay/

Virtual-future-computer essay – Paper Example Page 6

If one application crashes the operating system because of a bug, the other

applications are isolated from this fault and can continue Figure 1 . Classic

VIM. The VIM is a thin software layer that exports a virtual machine

abstraction. The abstraction looks enough like the hardware that any

software written for that hardware will run in the virtual machine. May 2005

35 The central design goals for Vim’s are compatibility, performance, and

simplicity. Compromise a single application, the attack is contained to Just

the compromised virtual machine.

Thus, Vim’s are a tool for restructuring systems to enhance robustness and

security-? without imposing the space or management overhead that would

be required if applications executed on separate physical machines. VIM

IMPLEMENTATION ISSUES The VIM must be able to export a hardware

interface to the software in a virtual machine that is roughly equivalent to

raw hardware and simultaneously maintain control of the machine and retain

the ability to interpose on hardware access. Various techniques can help

achieve this, each offering different design tradeoffs.

When evaluating these tradeoffs, the central design goals for Vim’s are

compatibility, performance, and simplicity. Compatibility is clearly important,

since the Vim’s chief benefit is its ability to run legacy software. The goal of

performance, a measure of retaliation overhead, is to run the virtual machine

at the same speed as the software would run on the real machine. Simplicity

is particularly important because a VIM failure is likely to cause all the virtual

machines running on the computer to fail. In particular, providing secure

isolation requires that the VIM be free of bugs that attackers could use to

subvert the system.

https://assignbuster.com/virtual-future-computer-essay/

Virtual-future-computer essay – Paper Example Page 7

CPU fertilization A CPU architecture is Brazzaville if it supports the basic VIM

technique of direct execution-? executing the virtual machine on the real

machine, while letting the VIM retain ultimate control of the CPA].

Implementing basic direct execution requires running the virtual machine’s

privileged (operating-system kernel) and unprivileged code in the Cups

unprivileged mode, while the VIM runs in privileged mode. Thus, when the

virtual machine attempts to perform a privileged operation, the CPU traps

into the VIM, which emulates the privileged operation on the virtual machine

state that the VIM manages.

The VIM handling of an instruction that disables interrupts provides a good

example. Letting a guest operating system disable interrupts would not be

safe since the VIM could not regain control of the CPA]. Instead, the VIM old

trap the operation to disable interrupts and then record that interrupts were

disabled for that virtual machine. The VIM would then postpone delivering

subsets the key to providing Brazzaville architecture is to provide trap

semantics that let a VIM safely, transparently, and directly use the CPU to

execute the virtual machine.

With these semantics, the VIM can use direct execution to create the illusion

of a normal physical machine for the software running inside the virtual

machine. Challenges. Unfortunately, most modern CPU architectures were

not designed to be Brazzaville, including the popular ex. architecture. For

example, ex. operating systems use the ex. POP instruction (pop CPU flags

from stack) to set and clear the interrupt-disable flag. When it runs in

unprivileged mode, POP does not trap.

https://assignbuster.com/virtual-future-computer-essay/

Virtual-future-computer essay – Paper Example Page 8

Instead, it simply ignores the changes to the interrupt flag, so direct

execution techniques will not work for privileged-mode code that uses this

instruction. Another challenge of the ex. architecture is that unprivileged

instructions let the CPU access privileged state. Software running in the

virtual machine can read the code segment register to determine the

processor’s current privilege level. A Brazzaville processor old trap this

instruction, and the VIM could then patch what the software running in the

virtual machine sees to reflect the virtual machine’s privilege level.

The ex., however, doesn’t trap the instruction, so with direct execution, the

software would see the wrong privilege level in the code segment register.

Techniques. Several techniques address how to implement Vim’s on Cups

that can’t be brutalized, the most prevalent being parameterizations and

direct execution combined with fast binary translation. With personalization,

the VIM builder defines the virtual machine interface by replacing

invaluableness portions of the original instruction set with easily brutalized

and more efficient equivalents.

Although operating systems must be ported to run in a virtual machine, most

normal applications run unmodified. Disco, 3 a VIM for the invaluableness

MIPS architecture, used personalization. Disco designers changed the MIPS

interrupt flag to be simply a special memory location in the virtual machine

rather than a privileged register in the processor. They replaced the MIPS

equivalent of the ex. POP instruction and the read access to the code

segment register with accesses to this special memory location.

https://assignbuster.com/virtual-future-computer-essay/

Virtual-future-computer essay – Paper Example Page 9

This replacement also eliminated fertilization overhead such as traps on

privileged instructions, which resulted in increased performance. The

designers then modified a version of the Iris operating system to take

advantage of this parallelized version of the MIPS architecture. The biggest

drawback to personalization is incompatibility. Any operating system run in a

parallelized VIM must be ported to that architecture. Operating system

vendors must cooperate, legacy operating systems cannot run, and existing

machines cannot easily migrate into virtual machines.

With years of excellent backward-compatible ex. hardware, huge amounts of

legacy software are still in use, which means that giving up backward

compatibility is not trivial. In spite of these drawbacks, academic research

projects have favored personalization because building a VIM that offers full

compatibility and high performance is a significant engineering challenge. To

provide fast, compatible fertilization of the ex. architecture, Ovenware

developed a new fertilization technique that combines operating systems,

the processor modes that run normal application programs are Brazzaville

and hence can run using direct execution.

A binary translator can run privileged modes that are invaluableness,

patching the invaluableness ex. instructions. The result is a high-

performance virtual machine that matches the hardware and thus maintains

total software compatibility. Others have developed binary translators that

translate code between Cups with different instruction sets. Ovenware’s

binary translation is much simpler because the source and target instruction

sets are nearly identical. The Vim’s basic technique is to run privileged mode

code (kernel code) under control of the binary translator.

https://assignbuster.com/virtual-future-computer-essay/

Virtual-future-computer essay – Paper Example Page 10

The translator translates the privileged code into a similar block, replacing

the problematic instructions, which lets the translated block run directly on

the CPA]. The binary translation system caches the translated block in a

trace cache so that translation does not occur on subsequent executions.

The translated code looks much like the results from the parallelized

approach: Normal instructions execute unchanged, while the translator

replaces instructions that need special treatment, like POP and reads from

the code segment registers with an instruction sequence similar to what a

parallelized virtual machine would need to run.

There is one important difference, however: Rather than applying the

changes to the source code of the operating system or applications, the

binary translator applies the changes when the code first executes. While

binary translation does incur some over- head, it is negligible on most

workloads. The translator runs only a fraction of the code, Building a VIM and

execution speeds are nearly indistinct offers full guessable from direct

execution once the trace cache has warmed up. Compatibility and Binary

translation is also a way to optimize high performance direct execution.

For example, privileged code is a significant that frequently traps can incur

significant administering action overhead when using direct execution since

each trap ranchers control from the overcharging. Dual machine to the

monitor and back. Binary translation can eliminate many of these traps,

which results in a lower overall fertilization overhead. This is particularly true

on Cups with deep instruction pipelines, such as the modern ex. JPL’s, where

traps incur high overhead. Future support.

https://assignbuster.com/virtual-future-computer-essay/

Virtual-future-computer essay – Paper Example Page 11

In the near term, both Intel with its Ponderosa technology and MAD with its

Pacific technology have announced hardware support for ex. CPU Vim’s.

Rather than making existing execution modes Brazzaville, both the Intel and

MAD technologies add a new execution mode to the processor that lets a VIM

safely and rampantly use direct execution for running virtual machines. To

improve performance, the mode attempts to reduce both the traps needed

to implement virtual machines and the time it takes to perform the traps.

When these technologies become available, directionality-only Vim’s could

be possible on ex. processors, at least for operating system environments

that do not use these new execution modes. If this hardware support works

as well as the IBM mainframe fertilization support of the early days, it should

be possible to decrease performance overhead even more, s well as

simplifying the implementation of fertilization techniques. Lessons from the

past indicate that adequate hardware support can decrease overhead, even

virtual machine abstraction overrides any performance benefits from

breaking compatibility.

Memory fertilization The traditional implementation technique for brutalizing

memory is to have the VIM maintain a shadow of the virtual machine’s

memory-management data structure. This data structure, the shadow page

table, lets the VIM precisely control which pages of the machine’s memory

are available to a virtual machine. When the operating system running in a

virtual machine establishes a mapping in its page table, the May 2005 37

VIM detects the changes and establishes a mapping in the corresponding

shadow page Resource table entry that points to the actual page

electromagnets Zion in the hardware memory.

https://assignbuster.com/virtual-future-computer-essay/

Virtual-future-computer essay – Paper Example Page 12

When the oversold great Dual machine is executing, the hardware uses

promise as an the shadow page table for memory translation so that the VIM

can always control area for future what memory each virtual machine is

using. Research. Like a traditional operating system’s virtual memory

subsystems, the VIM an page the virtual machine to a disk so that the

memory allocated to virtual machines can exceed the hardware’s physical

memory size. Because this effectively lets the VIM overcoming the machine

memory, the virtual machine workload requires less hardware.

The VIM can dynamically control how much memory each virtual machine

gets according to what it needs. Challenges. The Vim’s virtual memory

subsystem constantly controls how much memory goes to a virtual machine,

and it must periodically reclaim some of that memory by paging a portion of

the virtual machine out to disk. The operating system running in the virtual

machine (the Guests), however, is likely to have much better information

than a Vim’s virtual memory system about which pages are good candidates

for paging out.

For example, a Guests might note that the process that created a page has

exited, which means nothing will access the page again. The VIM operating

at the hardware level does not see this and might wastefully page out that

page. To address this problem, Ovenware’s SEX Servers adopted a

personalization-like approach, in which a balloon process running inside the

Guests can communicate with the VIM. When the VIM ants to take memory

away from a virtual machine, it asks the balloon process to allocate more

memory, essentially “ inflating” the process.

https://assignbuster.com/virtual-future-computer-essay/

Virtual-future-computer essay – Paper Example Page 13

The Guests then uses its superior knowledge about page replacement to

select the pages to give to the balloon process, which the process then

passes to the VIM for reallocation. The increased memory pressure caused

by inflating the balloon process causes the Guests to intelligently page

memory to the virtual disk. A second challenge for memory fertilization is the

size of modern operating systems and applications. Running multiple virtual

machines can waste considerable memory by storing attendant copies of

code and data that are identical across virtual machines.

To address this challenge, Ovenware designers developed content-based

page sharing for server products. In this scheme, the VIM tracks the contents

of physical pages, noting if they are identical. If so, the VIM modifies the

virtual machine’s shadow page tables to point to only a single copy. The VIM

can then delectate the redundant copy, thereby freeing the memory for

other uses. As with a normal copy- on-write page-sharing scheme, the VIM

gives each virtual machine its own copy of the page if the contents later

diverge.

To give an idea of potential savings, an ex. computer might have 30 virtual

machines running Microsoft Windows 2000 but only one copy of the Windows

kernel in the computer’s memory-? a significant reduction in physical

memory use. Future support. Operating systems make frequent changes to

their page tables, so keeping shadow copies up to date in software can incur

undesirable overhead. Hardware-managed shadow page tables have long

been present in mainframe fertilization architectures and would prove a

fruitful direction for accelerating ex. CPU fertilization.

https://assignbuster.com/virtual-future-computer-essay/

Virtual-future-computer essay – Paper Example Page 14

Resource management holds great promise as an area for future research.

Much work remains in investigating ways for Vim’s and guest operating

systems to make cooperative resource management decisions. In addition,

research must look at resource management at the entire data center level,

and we expect significant strides will be made in this area in the coming

decade. 1/0 fertilization Thirty years ago, the 1/0 subsystems of IBM

mainframes used a channel-based architecture, in which access to the 1/0

devices was through communication with a separate channel processor.

By using a channel processor, the VIM could safely export 1/0 device access

directly to the virtual machine. The result was a very low fertilization

overhead for 1/0. Rather than communicating with the device using traps

into the VIM, the software in the virtual machine could directly read and

write the device. This approach worked well for the 1/0 devices of that time,

such as text terminals, disks, card readers, and card punches. Challenges.

Current computing environments, with their richer and more diverse

collection of 1/0 devices, make brutalizing 1/0 much more difficult.

The ex.-based computing environments support a huge collection of 1/0

devices from different vendors with different programming interfaces.

Consequently, the Job of writing a VIM layer that talks to these various

devices becomes a huge effort. In addition, some devices such as a modern

PC’s graphics subsystem or a modern server’s network interface have

extremely high performance requirements. This makes low-overhead

fertilization an even more critical prerequisite for widespread acceptance.

Exporting a standard device interface means that the fertilization layer must

be able to communicate with the computer’s 1/0 devices.

https://assignbuster.com/virtual-future-computer-essay/

Virtual-future-computer essay – Paper Example Page 15

To provide this capability, Ovenware Workstation, a product targeting

desktop computers, developed the hosted architectures shown in Figure 2. In

this architecture, the fertilization layer uses the device drivers of a host

operating system (Hosts) such as Windows or Linux to access devices.

Because most 1/0 devices have drivers for these operating systems,

command to read or write blocks from the virtual disk, the virtual layer

translates the command into a system call that reads or writes a file in the

Hostess’s file system.

Similarly, the 1/0 VIM renders the virtual machine’s virtual display card in a

window on the Hosts, which lets the Hosts control, drive, and manage the

virtual machine’s 1/0 display devices regardless of what devices the Guests

thinks are resent. The hosted architecture has three important advantages.

First, the VIM is simple to install because users can install it like an

application on the Hosts rather than on the raw hardware, as with traditional

Vim’s. Second, the hosted architecture fully accommodates the rich diversity

of 1/0 devices in the ex. PC marketplace.

Third, the VIM can use the scheduling, resource management, and other

services the Hosts environment offers. The disadvantages of the hosted

architecture became material when Ovenware started to develop products

for the ex. server marketplace. The hosted architecture greatly increases the

performance overhead for 1/0 device fertilization. Each 1/0 request must

transfer control to the Hosts environment and then transition through the

Hostess’s software layers to talk to the 1/0 devices. For server environments

with high-performance network and disk subsystems, the resulting overhead

was unacceptably high.

https://assignbuster.com/virtual-future-computer-essay/

Virtual-future-computer essay – Paper Example Page 16

Another problem is that modern operating systems such as Windows and

Linux do not have the resource- management support to provide

performance isolation and service guarantees to the virtual machines-? a

feature that many server environments require. SEX Servers adopts a more

traditional VIM approach, running directly on the hardware without a host

operating system. In addition to sophisticated scheduling and resource

management, SEX App App App 1/0 VIM Guests VIM Hosts Standard ex. PC

hardware Figure 2. Ovenware’s hosted architecture.

Rather than running as a layer below all other software, the hosted

architecture shares the hardware with an existing operating system (Hosts).

Server has a highly optimized 1/0 subsystem for network and storage

devices. The SEX Server kernel can use device drivers from the Linux kernel

to talk directly to the vice, resulting in significantly lower fertilization

overhead for 1/0 devices. Ovenware could use this approach because

relatively few network and storage 1/0 devices have passed certification to

run in major ex. vendor server machines. Limiting support to these 1/0

devices makes directly managing the 1/0 devices feasible for servers.

Yet another performance optimization in Ovenware’s products is the ability

to export special highly optimized virtual 1/0 devices that don’t correspond

to any existing 1/0 requires that Guests environments use a special device

driver to access the 1/0 devices. The result is a more fertilization-friendly 1/0

device interface with lower overhead for communicating the 1/0 commands

from the Guests and thus higher performance. Future support. Like CPU

trends, industry trends in 1/0 subsystems point toward hardware support for

high-performance 1/0 device fertilization.

https://assignbuster.com/virtual-future-computer-essay/

Virtual-future-computer essay – Paper Example Page 17

Discrete 1/0 devices, such as the standard ex. PC keyboard controller and

DID disk controllers that date back to the original IBM PC, are giving way to

channel-like 1/0 devices, such as USB and CICS. Like the IBM mainframe 1/0

channels, these 1/0 interfaces greatly ease implementation complexity and

reduce fertilization overhead. With adequate hardware support, safely

passing these channel 1/0 devices directly to the software in the virtual

machine should be possible, effectively eliminating all 1/0 fertilization

overhead.

For this to work, 1/0 devices will need to know about virtual machines and be

able to support multiple virtual interfaces so that the VIM can safely map the

interface into the virtual machine. In this way, the virtual machine’s device

drivers will be able to comma 2005 39 enunciate directly with the 1/0 device

without the overhead of trapping into the VIM. Virtual machines 1/0 devices

that perform direct memory provide a powerful access ill require address

remapping.

The unifying paradigm remapping ensures that the memory for restructuring

addresses that the device driver running in the virtual machine specifies will

get mapped to desktop the locations in the computer’s memory that

management. The shadow page tables specify. For the isolation property to

hold, the device should be able to access only memory belonging to the

virtual machine regardless of how the driver in the virtual machine programs

the device. In a system with multiple virtual machines using the same 1/0

device, the VIM will need an efficient mechanism for routing device

completion interrupts to the correct virtual machine.

https://assignbuster.com/virtual-future-computer-essay/

Virtual-future-computer essay – Paper Example Page 18

Finally, Brazzaville 1/0 devices will need to interface to the VIM to maintain

isolation between hardware and software and ensure that the VIM can

continue to migrate and take a checkpoint of the virtual machines. 1/0

devices that provide this kind of support could minimize fertilization

overhead, allowing the use of virtual machines for even the most 1/0-

intensive workloads. Besides performance, a significant benefit is the

improved security and reliability gained from removing complex device

driver code from the VIM. Teens physical machines according to the data

center’s needs.

The VIM can handle traditional hardware-management problems, such as

hardware failure, simply by placing the virtual machines running on the

failed computer onto other correctly functioning hardware. The ability to

move running virtual machines also eases some hardware challenges, such

as scheduling preventive maintenance, dealing with equipment lease ends,

and deploying hardware upgrades. Administrators can use hot migration to

perform these tasks without service interruptions.

https://assignbuster.com/virtual-future-computer-essay/

	Virtual-future-computer essay

