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Kernel Data Structures Umair Hussain Malik p10-6016 [email protected] edu. 

pk As with any large software project, the Linux kernel provides these 

generic data structures and primitives to encourage code reuse. Kernel 

developers should use these data structures whenever possible and not “ roll

your own” solutions. In the following sections, we cover the most useful of 

these generic data structures, which are the following: * Linked lists * 

Queues * Maps * Binary trees Linked Lists 

The linked list is the most common data structure in the Linux kernel which, 

allows the storage and manipulation of a variable number of elements, called

the nodes of the list. The elements in a linked list are dynamically created 

and inserted into the list. This enables the management of a varying number

of elements unknown at compile time and each element in the list contains a

pointer to the next element. As elements are added to or removed from the 

list, the pointer to the next node is simply adjusted. Singly and Doubly 

Linked Lists 

The simplest data structure representing such a linked list might look similar 

to the following: /* an element in a linked list */ struct list_element { void 

*data; struct list_element *next; }; In some linked lists, each element also 

contains a pointer to the previous element. These lists are called doubly 

linked lists because they are linked both forward and backward. Linked lists 

that do not have a pointer to the previous element are called singly linked 

lists. A data structure representing a doubly linked list would look similar to 

this: /* an element in a linked list */ struct list_element { void *data;/* truct 

list_element *next; struct list_element *prev; }; Circular Linked Lists 

Normally, the last element in a linked list has no next element, it is set to 
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point to a special value, such as NULL, to indicate it is the last element in the

list. In some linked lists, the last element does not point to a special value. 

Instead, it points back to the first value. This linked list is called a circular 

linked list because the list is cyclic. Circular linked lists can come in both 

doubly and singly linked versions. Although the Linux kernel’s linked list 

implementation is unique, it is fundamentally a circular doubly linked list. 

Using this type of linked list provides the greatest flexibility. Moving Through 

a Linked List Movement through a linked list occurs linearly. You visit one 

element, follow the next pointer, and visit the next element. Rinse and 

repeat. This is the easiest method of moving through a linked list, and the 

one for which linked lists are best suited. Linked lists are illsuited for use 

cases where random access is an important operation. Instead, you use 

linked lists when iterating over the whole list is important and the dynamic 

addition and removal of elements is required. 

In linked list implementations, the first element is often represented by a 

special pointer—called the head—that enables easy access to the “ start” of 

the list. In a noncircular-linked list, the last element is delineated by its next 

pointer being NULL. In a circularlinked list, the last element is delineated 

because it points to the head element. Traversing the list, therefore, occurs 

linearly through each element from the first to the last. In a doubly linked 

list, movement can also occur backward, linearly from the last element to 

the first. 

Of course, given a specific element in the list, you can iterate backward and 

forward any number of elements, too. You need not traverse the whole list. 
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The Linux Kernel’s Implementation In comparison to most linked list 

implementations—including the generic approach described in the previous 

sections—the Linux kernel’s implementation is unique. Recall from the 

earlier discussion that data (or a grouping of data, such as a struct) is 

maintained in a linked list by adding a next (and perhaps a previous) node 

pointer to the data. For example, assume we had a fox structure to describe 

that member of the Canidae family: truct fox { unsigned long tail_length; 

unsigned long weight; boolis_fantastic; }; The common pattern for storing 

this structure in a linked list is to embed the list pointer in the structure. For 

example: struct fox { unsigned long tail_length; unsigned long weight; 

boolis_fantastic struct fox*next; struct fox*prev; }; The Linux kernel 

approach is different. Instead of turning the structure into a linked list, the 

Linux approach is to embed a linked list node in the structure. The Linked 

List Structure In the old days, there were multiple implementations of linked 

lists in the kernel. 

A single, powerful linked list implementation was needed to remove 

duplicate code. During the 2. 1 kernel development series, the official kernel 

linked-list implementation was introduced. All existing uses of linked lists 

now use the official implementation; do not reinvent the wheel! The linked-

list code is declared in the header file and the data structure is simple: struct

list_head { struct list_head *next struct list_head *prev; }; The next pointer 

points to the next list node, and the prev pointer points to the previous list 

node. Yet, seemingly, this is not particularly useful. 

What value is a giant linked list of linked list nodes? The utility is in how the 

list_head structure is used: struct fox { unsigned longtail_length; unsigned 

https://assignbuster.com/kernel-data-structures/



Kernel data structures – Paper Example Page 5

longweight; boolis_fantastic; struct list_head list; }; With this, list. next in fox 

points to the next element, and list. prev in fox points to the previous. Now 

this is becoming useful, but it gets better. The kernel provides a family of 

routines to manipulate linked lists. For example, the list_add() method adds 

a new node to an existing linked list. These methods, however, are generic: 

They accept only list_head structures. 

Using the macro container_of(), we can easily find the parent structure 

containing any given member variable. This is because in C, the offset of a 

given variable into a structure is fixed by the ABI at compile time. Defining a 

Linked List As shown, a list_head by itself is worthless; it is normally 

embedded inside your own structure: struct fox { unsigned longtail_length; 

unsigned longweight; boolis_fantastic; struct list_head list; }; List Heads One 

nice aspect of the kernel’s linked list implementation is that our fox nodes 

are indistinguishable. 

Each contains a list_head, and we can iterate from any one node to the next,

until we have seen every node. This approach is elegant, but you will 

generally want a special pointer that refers to your linked list, without being 

a list node itself. Interestingly, this special node is in fact a normal list_head: 

static LIST_HEAD(fox_list); This defines and initializes a list_head named 

fox_list. The majority of the linked list routines accept one or two 

parameters: the head node or the head node plus an actual list node. 

Manipulating Linked Lists The kernel provides a family of functions to 

manipulate linked lists. 
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They all take pointers to one or more list_head structures. The functions are 

implemented as inline functions in generic C and can be found in . 

Interestingly, all these functions are O(1). 1 This means they execute in 

constant time, regardless of the size of the list or any other inputs. * To add 

a node immediately after the head of linked list: list_add(struct list_head 

*new, struct list_head *head) * To add a node to the end of a linked list: 

list_add_tail(struct list_head *new, struct list_head *head) * After adding a 

node to a linked list, deleting a node from a list is the next most important 

operation. 

To delete a node from a linked list, use list_del(): list_del(struct list_head 

*entry) Queues A common programming pattern in any operating system 

kernel is producer and consumer. In this pattern, a producer creates data—

say, error messages to be read or networking packets to be processed—

while a consumer, in turn, reads, processes, or otherwise consumes the data.

Often the easiest way to implement this pattern is with a queue. The 

producer pushes data onto the queue and the consumer pulls data off the 

queue. The consumer retrieves the data in the order it was enqueued. That 

is, the first data on the queue is the first data off the queue. 

For this reason, queues are also called FIFOs, short for first-in, first-out. The 

Linux kernel’s generic queue implementation is called kfifo and is 

implemented in kernel/kfifo. c and declared in . kfifo Linux’s kfifo works like 

most other queue abstractions, providing two primary operations: enqueue 

(unfortunately named in) and dequeue (out). The kfifo object maintains two 

offsets into the queue: an in offset and an out offset. The in offset is the 

location in the queue to which the next enqueue will occur. The out offset is 
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the location in the queue from which the next dequeue will occur. To use a 

kfifo, you must first define and initialize it. As with most kernel objects, you 

can do this dynamically or statically. The most common method is dynamic: 

int kfifo_alloc(struct kfifo *fifo, unsigned int size, gfp_t gfp_mask); * When 

your kfifo is created and initialized, enqueuing data into the queue is 

performed via the kfifo_in() function: unsigned int kfifo_in(struct kfifo *fifo, 

const void *from, unsigned int len); * When you add data to a queue with 

kfifo_in(), you can remove it with kfifo_out(): unsigned int kfifo_out(struct 

kfifo *fifo, void *to, unsigned int len); To obtain the total size in bytes of the 

buffer used to store a kfifo’s queue, call kfifo_size(): static inline unsigned int 

kfifo_size(struct kfifo *fifo); * Finally, kfifo_is_empty() and kfifo_is_full() return

nonzero if the given kfifo is empty or full, respectively, and zero if not: static 

inline int kfifo_is_empty(struct kfifo *fifo); static inline int kfifo_is_full(struct 

kfifo *fifo); * To reset a kfifo, jettisoning all the contents of the queue, call 

kfifo_reset(): static inline void kfifo_reset(struct kfifo *fifo); * To destroy a 

kfifo allocated with kfifo_alloc(), call kfifo_free(): void kfifo_free(struct kfifo 

*fifo); 

If you created your kfifo with kfifo_init(), it is your responsibility to free the 

associated buffer. How you do so depends on how you created it. See 

Chapter 12 for a discussion on allocating and freeing dynamic memory. 

Example Queue Usage With these interfaces under our belt, let’s take a look 

at a simple example of using a kfifo. Assume we created a kfifo pointed at by

fifo with a queue size of 8KB. We can now enqueue data onto the queue. In 

this example, we enqueue simple integers. In your own code, you will likely 

enqueue more complicated, task-specific structures. 
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Using integers in this example, let’s see exactly how the kfifo works: 

unsigned int i; /* enqueue [0, 32) to the kfifo named ‘ fifo’ */ for (i = 0; i < 

32; i++) kfifo_in(fifo, &i; sizeof(i)); The kfifo named fifo now contains 0 

through 31, inclusive. We can take a peek at the first item in the queue and 

verify it is 0: unsigned int val; int ret; ret = kfifo_out_peek(fifo, &val, 

sizeof(val), 0); if (ret ! = sizeof(val)) return -EINVAL; printk(KERN_INFO “%u”, 

val); /* should print 0 */ To dequeue and print all the items in the kfifo, we 

can use kfifo_out(): /* while there is data in the queue … */ hile 

(kfifo_avail(fifo)) { unsigned int val; int ret; /* … read it, one integer at a time

*/ ret = kfifo_out(fifo, &val, sizeof(val)); if (ret ! = sizeof(val)) return -EINVAL; 

printk(KERN_INFO “%u”, val); } This prints 0 through 31, inclusive, and in 

that order. (If this code snippet printed the numbers backward, from 31 to 0, 

we would have a stack, not a queue. ) Maps A map, also known as an 

associative array, is a collection of unique keys, where each key is 

associated with a specific value. The relationship between a key and its 

value is called a mapping. Maps support at least three operations: Add (key, 

value) * Remove (key) * Value = Lookup (key) Although a hash table is a 

type of map, not all maps are implemented via hashes. Instead of a hash 

table, maps can also use a self-balancing binary search tree to store their 

data. Although a hash offers better average-case asymptotic complexity a 

binary search tree has better worst-case behavior. A binary search tree also 

enables order preservation, enabling users to efficiently iterate over the 

entire collection in a sorted order. Finally, a binary search tree does not 

require a hash function; instead, any key type s suitable so long as it can 

define the <= operator. Although the general term for all collections 

mapping a key to a value, the name maps often refers specifically to an 
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associated array implemented using a binary search tree as opposed to a 

hash table. The Linux kernel provides a simple and efficient map data 

structure, but it is not a general-purpose map. Instead, it is designed for one 

specific use case: mapping a unique identification number (UID) to a pointer. 

In addition to providing the three main map operations, Linux’s 

implementation also piggybacks an allocate operation on top of the add 

operation. 

This allocate operation not only adds a UID/value pair to the map but also 

generates the UID. The IDR data structure is used for mapping user-space 

UIDs, such as inotify watch descriptors or POSIX timer IDs, to their associated

kernel data structure, such as the inotify_watch or k_itimer structures, 

respectively. Following the Linux kernel’s scheme of obfuscated, confusing 

names, this map is called IDR. Initializing an IDR Setting up an idr is easy. 

First you statically define or dynamically allocate an idr structure. Then you 

call idr_init(): void idr_init(struct idr *idp); 

Allocating a New UID Once you have an idr set up, you can allocate a new 

UID, which is a two-step process. First you tell the idr that you want to 

allocate a new UID, allowing it to resize the backing tree as necessary. Then, 

with a second call, you actually request the new UID. * The first function, to 

resize the backing tree, is idr_pre_get(): int idr_pre_get(struct idr *idp, gfp_t 

gfp_mask); * The second function, to actually obtain a new UID and add it to 

the idr, is idr_get_new(): int idr_get_new(struct idr *idp, void *ptr, int *id); 

Looking Up a UID 
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When we have allocated some number of UIDs in an idr, we can look them 

up: The caller provides the UID, and the idr returns the associated pointer. 

This is accomplished, in a much simpler manner than allocating a new UID, 

with the idr_find() function: void *idr_find(struct idr *idp, int id); Removing a 

UID To remove a UID from an idr, use idr_remove(): void idr_remove(struct 

idr *idp, int id); Destroying an IDR Destroying an idr is a simple affair, 

accomplished with the idr_destroy()function: void idr_destroy(struct idr *idp);

Binary Trees A tree is a data structure that provides a hierarchical tree-like 

structure of data. 

Mathematically, it is an acyclic, connected, directed graph in which each 

vertex (called a node) has zero or more outgoing edges and zero or one 

incoming edges. A binary tree is a tree in which nodes have at most two 

outgoing edges—that is, a tree in which nodes have zero, one, or two 

children. Binary Search Trees A binary search tree (often abbreviated BST) is

a binary tree with a specific ordering imposed on its nodes. The ordering is 

often defined via the following induction: * The left subtree of the root 

contains only nodes with values less than the root. The right subtree of the 

root contains only nodes with values greater than the root. * All subtrees are 

also binary search trees. Self-Balancing Binary Search Trees The depth of a 

node is measured by how many parent nodes it is from the root. Nodes at 

the “ bottom” of the tree—those with no children—are called leaves. The 

height of a tree is the depth of the deepest node in the tree. A balanced 

binary search tree is a binary search tree in which the depth of all leaves 

differs by at most one. A self-balancing binary search tree is a binary search 
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tree that attempts, as part of its normal operations, to remain (semi) 

balanced. 

Red-Black Trees A red-black tree is a type of self-balancing binary search 

tree. Linux’s primary binary tree data structure is the red-black tree. Red-

black trees have a special color attribute, which is either red or black. Red-

black trees remain semi-balanced by enforcing that the following six 

properties remain true: * All nodes are either red or black. * Leaf nodes are 

black. * Leaf nodes do not contain data. * All non-leaf nodes have two 

children. * If a node is red, both of its children are black. * The path from a 

node to one of its leaves contains the same number of black nodes as the 

shortest path to any of its other leaves. 

Taken together, these properties ensure that the deepest leaf has a depth of 

no more than double that of the shallowest leaf. Consequently, the tree is 

always semi-balanced. Why this is true is surprisingly simple. First, by 

property five, a red node cannot be the child or parent of another red node. 

By property six, all paths through the tree to its leaves have the same 

number of black nodes. The longest path through the tree alternates red and

black nodes. Thus the shortest path, which must have the same number of 

black nodes, contains only black nodes. 

Therefore, the longest path from the root to a leaf is no more than double 

the shortest path from the root to any other leaf. If the insertion and removal

operations enforce these six properties, the tree remains semi-balanced. 

Now, it might seem odd to require insert and remove to maintain these 

particular properties. Why not implement the operations such that they 
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enforce other, simpler rules that result in a balanced tree? It turns out that 

these properties are relatively easy to enforce (although complex to 

implement), allowing insert and remove to guarantee a semi-balanced tree 

without burdensome extra overhead. 

The Linux implementation of red-black trees is called rbtrees. They are 

defined in lib/rbtree. c and declared in . Conclusion In this paper we 

discussed many of the generic data structures that Linux kernel developers 

use to implement everything from the process scheduler to device drivers. 

When writing your own kernel code, always reuse existing kernel 

infrastructure and don’t reinvent the wheel. Reference Linux Kernel 

Development (Third Edition) by Robert Love 
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