
Kernel data
structures

https://assignbuster.com/kernel-data-structures/
https://assignbuster.com/kernel-data-structures/
https://assignbuster.com/

Kernel data structures – Paper Example Page 2

Kernel Data Structures Umair Hussain Malik p10-6016 edu.

pk As with any large software project, the Linux kernel provides these

generic data structures and primitives to encourage code reuse. Kernel

developers should use these data structures whenever possible and not “ roll

your own” solutions. In the following sections, we cover the most useful of

these generic data structures, which are the following: * Linked lists *

Queues * Maps * Binary trees Linked Lists

The linked list is the most common data structure in the Linux kernel which,

allows the storage and manipulation of a variable number of elements, called

the nodes of the list. The elements in a linked list are dynamically created

and inserted into the list. This enables the management of a varying number

of elements unknown at compile time and each element in the list contains a

pointer to the next element. As elements are added to or removed from the

list, the pointer to the next node is simply adjusted. Singly and Doubly

Linked Lists

The simplest data structure representing such a linked list might look similar

to the following: /* an element in a linked list */ struct list_element { void

*data; struct list_element *next; }; In some linked lists, each element also

contains a pointer to the previous element. These lists are called doubly

linked lists because they are linked both forward and backward. Linked lists

that do not have a pointer to the previous element are called singly linked

lists. A data structure representing a doubly linked list would look similar to

this: /* an element in a linked list */ struct list_element { void *data;/* truct

list_element *next; struct list_element *prev; }; Circular Linked Lists

Normally, the last element in a linked list has no next element, it is set to

https://assignbuster.com/kernel-data-structures/

Kernel data structures – Paper Example Page 3

point to a special value, such as NULL, to indicate it is the last element in the

list. In some linked lists, the last element does not point to a special value.

Instead, it points back to the first value. This linked list is called a circular

linked list because the list is cyclic. Circular linked lists can come in both

doubly and singly linked versions. Although the Linux kernel’s linked list

implementation is unique, it is fundamentally a circular doubly linked list.

Using this type of linked list provides the greatest flexibility. Moving Through

a Linked List Movement through a linked list occurs linearly. You visit one

element, follow the next pointer, and visit the next element. Rinse and

repeat. This is the easiest method of moving through a linked list, and the

one for which linked lists are best suited. Linked lists are illsuited for use

cases where random access is an important operation. Instead, you use

linked lists when iterating over the whole list is important and the dynamic

addition and removal of elements is required.

In linked list implementations, the first element is often represented by a

special pointer—called the head—that enables easy access to the “ start” of

the list. In a noncircular-linked list, the last element is delineated by its next

pointer being NULL. In a circularlinked list, the last element is delineated

because it points to the head element. Traversing the list, therefore, occurs

linearly through each element from the first to the last. In a doubly linked

list, movement can also occur backward, linearly from the last element to

the first.

Of course, given a specific element in the list, you can iterate backward and

forward any number of elements, too. You need not traverse the whole list.

https://assignbuster.com/kernel-data-structures/

Kernel data structures – Paper Example Page 4

The Linux Kernel’s Implementation In comparison to most linked list

implementations—including the generic approach described in the previous

sections—the Linux kernel’s implementation is unique. Recall from the

earlier discussion that data (or a grouping of data, such as a struct) is

maintained in a linked list by adding a next (and perhaps a previous) node

pointer to the data. For example, assume we had a fox structure to describe

that member of the Canidae family: truct fox { unsigned long tail_length;

unsigned long weight; boolis_fantastic; }; The common pattern for storing

this structure in a linked list is to embed the list pointer in the structure. For

example: struct fox { unsigned long tail_length; unsigned long weight;

boolis_fantastic struct fox*next; struct fox*prev; }; The Linux kernel

approach is different. Instead of turning the structure into a linked list, the

Linux approach is to embed a linked list node in the structure. The Linked

List Structure In the old days, there were multiple implementations of linked

lists in the kernel.

A single, powerful linked list implementation was needed to remove

duplicate code. During the 2. 1 kernel development series, the official kernel

linked-list implementation was introduced. All existing uses of linked lists

now use the official implementation; do not reinvent the wheel! The linked-

list code is declared in the header file and the data structure is simple: struct

list_head { struct list_head *next struct list_head *prev; }; The next pointer

points to the next list node, and the prev pointer points to the previous list

node. Yet, seemingly, this is not particularly useful.

What value is a giant linked list of linked list nodes? The utility is in how the

list_head structure is used: struct fox { unsigned longtail_length; unsigned

https://assignbuster.com/kernel-data-structures/

Kernel data structures – Paper Example Page 5

longweight; boolis_fantastic; struct list_head list; }; With this, list. next in fox

points to the next element, and list. prev in fox points to the previous. Now

this is becoming useful, but it gets better. The kernel provides a family of

routines to manipulate linked lists. For example, the list_add() method adds

a new node to an existing linked list. These methods, however, are generic:

They accept only list_head structures.

Using the macro container_of(), we can easily find the parent structure

containing any given member variable. This is because in C, the offset of a

given variable into a structure is fixed by the ABI at compile time. Defining a

Linked List As shown, a list_head by itself is worthless; it is normally

embedded inside your own structure: struct fox { unsigned longtail_length;

unsigned longweight; boolis_fantastic; struct list_head list; }; List Heads One

nice aspect of the kernel’s linked list implementation is that our fox nodes

are indistinguishable.

Each contains a list_head, and we can iterate from any one node to the next,

until we have seen every node. This approach is elegant, but you will

generally want a special pointer that refers to your linked list, without being

a list node itself. Interestingly, this special node is in fact a normal list_head:

static LIST_HEAD(fox_list); This defines and initializes a list_head named

fox_list. The majority of the linked list routines accept one or two

parameters: the head node or the head node plus an actual list node.

Manipulating Linked Lists The kernel provides a family of functions to

manipulate linked lists.

https://assignbuster.com/kernel-data-structures/

Kernel data structures – Paper Example Page 6

They all take pointers to one or more list_head structures. The functions are

implemented as inline functions in generic C and can be found in .

Interestingly, all these functions are O(1). 1 This means they execute in

constant time, regardless of the size of the list or any other inputs. * To add

a node immediately after the head of linked list: list_add(struct list_head

*new, struct list_head *head) * To add a node to the end of a linked list:

list_add_tail(struct list_head *new, struct list_head *head) * After adding a

node to a linked list, deleting a node from a list is the next most important

operation.

To delete a node from a linked list, use list_del(): list_del(struct list_head

*entry) Queues A common programming pattern in any operating system

kernel is producer and consumer. In this pattern, a producer creates data—

say, error messages to be read or networking packets to be processed—

while a consumer, in turn, reads, processes, or otherwise consumes the data.

Often the easiest way to implement this pattern is with a queue. The

producer pushes data onto the queue and the consumer pulls data off the

queue. The consumer retrieves the data in the order it was enqueued. That

is, the first data on the queue is the first data off the queue.

For this reason, queues are also called FIFOs, short for first-in, first-out. The

Linux kernel’s generic queue implementation is called kfifo and is

implemented in kernel/kfifo. c and declared in . kfifo Linux’s kfifo works like

most other queue abstractions, providing two primary operations: enqueue

(unfortunately named in) and dequeue (out). The kfifo object maintains two

offsets into the queue: an in offset and an out offset. The in offset is the

location in the queue to which the next enqueue will occur. The out offset is

https://assignbuster.com/kernel-data-structures/

Kernel data structures – Paper Example Page 7

the location in the queue from which the next dequeue will occur. To use a

kfifo, you must first define and initialize it. As with most kernel objects, you

can do this dynamically or statically. The most common method is dynamic:

int kfifo_alloc(struct kfifo *fifo, unsigned int size, gfp_t gfp_mask); * When

your kfifo is created and initialized, enqueuing data into the queue is

performed via the kfifo_in() function: unsigned int kfifo_in(struct kfifo *fifo,

const void *from, unsigned int len); * When you add data to a queue with

kfifo_in(), you can remove it with kfifo_out(): unsigned int kfifo_out(struct

kfifo *fifo, void *to, unsigned int len); To obtain the total size in bytes of the

buffer used to store a kfifo’s queue, call kfifo_size(): static inline unsigned int

kfifo_size(struct kfifo *fifo); * Finally, kfifo_is_empty() and kfifo_is_full() return

nonzero if the given kfifo is empty or full, respectively, and zero if not: static

inline int kfifo_is_empty(struct kfifo *fifo); static inline int kfifo_is_full(struct

kfifo *fifo); * To reset a kfifo, jettisoning all the contents of the queue, call

kfifo_reset(): static inline void kfifo_reset(struct kfifo *fifo); * To destroy a

kfifo allocated with kfifo_alloc(), call kfifo_free(): void kfifo_free(struct kfifo

*fifo);

If you created your kfifo with kfifo_init(), it is your responsibility to free the

associated buffer. How you do so depends on how you created it. See

Chapter 12 for a discussion on allocating and freeing dynamic memory.

Example Queue Usage With these interfaces under our belt, let’s take a look

at a simple example of using a kfifo. Assume we created a kfifo pointed at by

fifo with a queue size of 8KB. We can now enqueue data onto the queue. In

this example, we enqueue simple integers. In your own code, you will likely

enqueue more complicated, task-specific structures.

https://assignbuster.com/kernel-data-structures/

Kernel data structures – Paper Example Page 8

Using integers in this example, let’s see exactly how the kfifo works:

unsigned int i; /* enqueue [0, 32) to the kfifo named ‘ fifo’ */ for (i = 0; i <

32; i++) kfifo_in(fifo, &i; sizeof(i)); The kfifo named fifo now contains 0

through 31, inclusive. We can take a peek at the first item in the queue and

verify it is 0: unsigned int val; int ret; ret = kfifo_out_peek(fifo, &val,

sizeof(val), 0); if (ret ! = sizeof(val)) return -EINVAL; printk(KERN_INFO “%u”,

val); /* should print 0 */ To dequeue and print all the items in the kfifo, we

can use kfifo_out(): /* while there is data in the queue … */ hile

(kfifo_avail(fifo)) { unsigned int val; int ret; /* … read it, one integer at a time

*/ ret = kfifo_out(fifo, &val, sizeof(val)); if (ret ! = sizeof(val)) return -EINVAL;

printk(KERN_INFO “%u”, val); } This prints 0 through 31, inclusive, and in

that order. (If this code snippet printed the numbers backward, from 31 to 0,

we would have a stack, not a queue.) Maps A map, also known as an

associative array, is a collection of unique keys, where each key is

associated with a specific value. The relationship between a key and its

value is called a mapping. Maps support at least three operations: Add (key,

value) * Remove (key) * Value = Lookup (key) Although a hash table is a

type of map, not all maps are implemented via hashes. Instead of a hash

table, maps can also use a self-balancing binary search tree to store their

data. Although a hash offers better average-case asymptotic complexity a

binary search tree has better worst-case behavior. A binary search tree also

enables order preservation, enabling users to efficiently iterate over the

entire collection in a sorted order. Finally, a binary search tree does not

require a hash function; instead, any key type s suitable so long as it can

define the <= operator. Although the general term for all collections

mapping a key to a value, the name maps often refers specifically to an

https://assignbuster.com/kernel-data-structures/

Kernel data structures – Paper Example Page 9

associated array implemented using a binary search tree as opposed to a

hash table. The Linux kernel provides a simple and efficient map data

structure, but it is not a general-purpose map. Instead, it is designed for one

specific use case: mapping a unique identification number (UID) to a pointer.

In addition to providing the three main map operations, Linux’s

implementation also piggybacks an allocate operation on top of the add

operation.

This allocate operation not only adds a UID/value pair to the map but also

generates the UID. The IDR data structure is used for mapping user-space

UIDs, such as inotify watch descriptors or POSIX timer IDs, to their associated

kernel data structure, such as the inotify_watch or k_itimer structures,

respectively. Following the Linux kernel’s scheme of obfuscated, confusing

names, this map is called IDR. Initializing an IDR Setting up an idr is easy.

First you statically define or dynamically allocate an idr structure. Then you

call idr_init(): void idr_init(struct idr *idp);

Allocating a New UID Once you have an idr set up, you can allocate a new

UID, which is a two-step process. First you tell the idr that you want to

allocate a new UID, allowing it to resize the backing tree as necessary. Then,

with a second call, you actually request the new UID. * The first function, to

resize the backing tree, is idr_pre_get(): int idr_pre_get(struct idr *idp, gfp_t

gfp_mask); * The second function, to actually obtain a new UID and add it to

the idr, is idr_get_new(): int idr_get_new(struct idr *idp, void *ptr, int *id);

Looking Up a UID

https://assignbuster.com/kernel-data-structures/

Kernel data structures – Paper Example Page 10

When we have allocated some number of UIDs in an idr, we can look them

up: The caller provides the UID, and the idr returns the associated pointer.

This is accomplished, in a much simpler manner than allocating a new UID,

with the idr_find() function: void *idr_find(struct idr *idp, int id); Removing a

UID To remove a UID from an idr, use idr_remove(): void idr_remove(struct

idr *idp, int id); Destroying an IDR Destroying an idr is a simple affair,

accomplished with the idr_destroy()function: void idr_destroy(struct idr *idp);

Binary Trees A tree is a data structure that provides a hierarchical tree-like

structure of data.

Mathematically, it is an acyclic, connected, directed graph in which each

vertex (called a node) has zero or more outgoing edges and zero or one

incoming edges. A binary tree is a tree in which nodes have at most two

outgoing edges—that is, a tree in which nodes have zero, one, or two

children. Binary Search Trees A binary search tree (often abbreviated BST) is

a binary tree with a specific ordering imposed on its nodes. The ordering is

often defined via the following induction: * The left subtree of the root

contains only nodes with values less than the root. The right subtree of the

root contains only nodes with values greater than the root. * All subtrees are

also binary search trees. Self-Balancing Binary Search Trees The depth of a

node is measured by how many parent nodes it is from the root. Nodes at

the “ bottom” of the tree—those with no children—are called leaves. The

height of a tree is the depth of the deepest node in the tree. A balanced

binary search tree is a binary search tree in which the depth of all leaves

differs by at most one. A self-balancing binary search tree is a binary search

https://assignbuster.com/kernel-data-structures/

Kernel data structures – Paper Example Page 11

tree that attempts, as part of its normal operations, to remain (semi)

balanced.

Red-Black Trees A red-black tree is a type of self-balancing binary search

tree. Linux’s primary binary tree data structure is the red-black tree. Red-

black trees have a special color attribute, which is either red or black. Red-

black trees remain semi-balanced by enforcing that the following six

properties remain true: * All nodes are either red or black. * Leaf nodes are

black. * Leaf nodes do not contain data. * All non-leaf nodes have two

children. * If a node is red, both of its children are black. * The path from a

node to one of its leaves contains the same number of black nodes as the

shortest path to any of its other leaves.

Taken together, these properties ensure that the deepest leaf has a depth of

no more than double that of the shallowest leaf. Consequently, the tree is

always semi-balanced. Why this is true is surprisingly simple. First, by

property five, a red node cannot be the child or parent of another red node.

By property six, all paths through the tree to its leaves have the same

number of black nodes. The longest path through the tree alternates red and

black nodes. Thus the shortest path, which must have the same number of

black nodes, contains only black nodes.

Therefore, the longest path from the root to a leaf is no more than double

the shortest path from the root to any other leaf. If the insertion and removal

operations enforce these six properties, the tree remains semi-balanced.

Now, it might seem odd to require insert and remove to maintain these

particular properties. Why not implement the operations such that they

https://assignbuster.com/kernel-data-structures/

Kernel data structures – Paper Example Page 12

enforce other, simpler rules that result in a balanced tree? It turns out that

these properties are relatively easy to enforce (although complex to

implement), allowing insert and remove to guarantee a semi-balanced tree

without burdensome extra overhead.

The Linux implementation of red-black trees is called rbtrees. They are

defined in lib/rbtree. c and declared in . Conclusion In this paper we

discussed many of the generic data structures that Linux kernel developers

use to implement everything from the process scheduler to device drivers.

When writing your own kernel code, always reuse existing kernel

infrastructure and don’t reinvent the wheel. Reference Linux Kernel

Development (Third Edition) by Robert Love

https://assignbuster.com/kernel-data-structures/

	Kernel data structures

