
C++ arrays guideline

https://assignbuster.com/c-arrays-guideline/
https://assignbuster.com/

C++ arrays guideline – Paper Example Page 2

C++ provides a data structure, the array, which stores a fixed-size

sequential collection of elements of the same type. An array is used to store

a collection of data, but it is often more useful to think of an array as a

collection of variables of the same type. Instead of declaring individual

variables, such as number0, number1, ... , and number99, you declare one

array variable such as numbers and use numbers[0], numbers[1], and ... ,

numbers[99] to represent individual variables.

A specific element in an array is accessed by an index. All arrays consist of

contiguous memory locations. The lowest address corresponds to the first

element and the highest address to the last element. Declaring Arrays: To

declare an array in C++, the programmer specifies the type of the elements

and the number of elements required by an array as follows: type arrayName

[arraySize];| This is called a single-dimension array. The arraySize must be

an integer constant greater than zero and type can be any valid C++ data

type.

For example, to declare a 10-element array called balance of type double,

use this statement: double balance[10];| Initializing Arrays: You can initialize

C++ array elements either one by one or using a single statement as

follows: double balance[5] = {1000. 0, 2. 0, 3. 4, 17. 0, 50. 0};| The number

of values between braces { } can not be larger than the number of elements

that we declare for the array between square brackets [].

Following is an example to assign a single element of the array: If you omit

the size of the array, an array just big enough to hold the initialization is

created. Therefore, if you write: double balance[] = {1000. 0, 2. 0, 3. 4, 17.

0, 50. 0};| You will create exactly the same array as you did in the previous

https://assignbuster.com/c-arrays-guideline/

C++ arrays guideline – Paper Example Page 3

example. balance[4] = 50. 0;| The above statement assigns element number

5th in the array a value of 50. 0. Array with 4th index will be 5th ie. last

element because all arrays have 0 as the index of their first element which is

also called base index.

Following is the pictorial representaion of the same array we discussed

above: Accessing Array Elements: An element is accessed by indexing the

array name. This is done by placing the index of the element within square

brackets after the name of the array. For example: double salary =

balance[9];| The above statement will take 10th element from the array and

assign the value to salary variable. Following is an example which will use all

the above mentioned three concepts viz. eclaration, assignment and

accessing arrays: #include using namespace std; #include using std:: setw;

int main (){ int n[10]; // n is an array of 10 integers // initialize elements of

array n to 0 for (int i = 0; i < 10; i++) { n[i] = i + 100; // set element at

location i to i + 100 } cout << " Element" << setw(13) << " Value" <<

endl; // output each array element's value for (int j = 0; j ; 10; j++) { cout ;;

setw(7);; j ;; setw(13) ;; n[j] ;; endl; } return 0;}| This program makes use

setw() function to format the output. When the above code is compiled and

executed, it produces following result: Element Value 0 100 1 101 2 102 3

103 4 104 5 105 6 106 7 107 8 108 9 109| sequence: Copy decl-specifier

identifier [constant-expression] decl-specifier identifier [] decl-specifier

identifer [][constant-expression] . . . decl-specifier identifier [constant-

expression] [constant-expression] . . . 1. The declaration specifier: * An

optional storage class specifier. * Optional const and/or volatile specifiers.

The type name of the elements of the array. 2. The declarator: * The

https://assignbuster.com/c-arrays-guideline/

C++ arrays guideline – Paper Example Page 4

identifier. * A constant expression of integral type enclosed in brackets, []. If

multiple dimensions are declared using additional brackets, the constant

expression may be omitted on the first set of brackets. * Optional additional

brackets enclosing constant expressions. 3. An optional initializer. See

Initializers. The number of elements in the array is given by the constant

expression. The first element in the array is the 0th element, and the last

element is the (n-1) element, where n is the number of elements the array

can contain. The constant-expression must be of an integral type and must

be greater than 0.

A zero-sized array is legal only when the array is the last field in a struct or

union and when the Microsoft extensions (/Ze) are enabled. The following

example shows how to define an array at run time: Copy // arrays. cpp //

compile with: /EHsc #include ; iostream; int main() { using namespace std;

int size = 3, i = 0; int* myarr = new int[size]; for (i = 0 ; i ; size ; i++)

myarr[i] = 10; for (i = 0 ; i ; size ; i++) printf_s(" myarr[%d] = %d

", i, myarr[i]); delete [] myarr; } Arrays are derived types and can therefore

be constructed from any other derived or fundamental type except functions,

references, and void. Arrays constructed from other arrays are

multidimensional arrays.

These multidimensional arrays are specified by placing multiple bracketed

constant expressions in sequence. For example, consider this declaration:

Copy int i2[5][7]; It specifies an array of type int, conceptually arranged in a

two-dimensional matrix of five rows and seven columns, as shown in the

following figure: Conceptual Layout of Multidimensional Array In declarations

of multidimensioned arrays that have an initializer list (as described in

https://assignbuster.com/c-arrays-guideline/

C++ arrays guideline – Paper Example Page 5

Initializers), the constant expression that specifies the bounds for the first

dimension can be omitted. For example: Copy // arrays2. cpp // compile with:

/c const int cMarkets = 4; // Declare a float that represents the transportation

costs. ouble TransportCosts[][cMarkets] = { { 32. 19, 47. 29, 31. 99, 19.

11 }, { 11. 29, 22. 49, 33. 47, 17. 29 }, { 41. 97, 22. 09, 9. 76, 22. 55 } };

The preceding declaration defines an array that is three rows by four

columns. The rows represent factories and the columns represent markets to

which the factories ship. The values are the transportation costs from the

factories to the markets. The first dimension of the array is left out, but the

compiler fills it in by examining the initializer. Topics in this section: * Using

Arrays * Arrays in Expressions * Interpretation of Subscript Operator *

Indirection on Array Types * Ordering of C++ Arrays Example

The technique of omitting the bounds specification for the first dimension of

a multidimensional array can also be used in function declarations as follows:

Copy // multidimensional_arrays. cpp // compile with: /EHsc // arguments: 3

#include ; limits; // Includes DBL_MAX #include ; iostream; const int cMkts =

4, cFacts = 2; // Declare a float that represents the transportation costs

double TransportCosts[][cMkts] = { { 32. 19, 47. 29, 31. 99, 19. 11 }, { 11.

29, 22. 49, 33. 47, 17. 29 }, { 41. 97, 22. 09, 9. 76, 22. 55 } }; // Calculate

size of unspecified dimension const int cFactories = sizeof TransportCosts /

sizeof(double[cMkts]); double FindMinToMkt(int Mkt, double

myTransportCosts[][cMkts], int mycFacts); sing namespace std; int main(int

argc, char *argv[]) { double MinCost; if (argv[1] == 0) { cout ;; " You must

specify the number of markets. " ;; endl; exit(0); } MinCost =

FindMinToMkt(*argv[1] - '0', TransportCosts, cFacts); cout ;; " The minimum

https://assignbuster.com/c-arrays-guideline/

C++ arrays guideline – Paper Example Page 6

cost to Market " ;; argv[1] ;; " is: " ;; MinCost ;; "

"; } double FindMinToMkt(int Mkt, double myTransportCosts[][cMkts], int

mycFacts) { double MinCost = DBL_MAX; for(int i = 0; i ; cFacts; ++i)

MinCost = (MinCost ; TransportCosts[i][Mkt]) ? MinCost : TransportCosts[i]

[Mkt]; return MinCost; }] This article is part of our on-going C programming

series.

There are times while writing C code, you may want to store multiple items

of same type as contiguous bytes in memory so that searching and sorting of

items becomes easy. For example: 1. Storing a string that contains series of

characters. Like storing a name in memory. 2. Storing multiple strings. Like

storing multiple names. C programming language provides the concept of

arrays to help you with these scenarios. 1. What is an Array? An array is a

collection of same type of elements which are sheltered under a common

name. An array can be visualised as a row in a table, whose each successive

block can be thought of as memory bytes containing one element.

Look at the figure below : An Array of four elements:

+===

======+ | elem1 | elem2 | elem3 | elem4 |

+===

======+ The number of 8 bit bytes that each element occupies depends

on the type of array. If type of array is ‘ char’ then it means the array stores

character elements. Since each character occupies one byte so elements of

a character array occupy one byte each. 2. How to Define an Array? An array

is defined as following : ; type-of-array; ; name-of-array; [; number of

https://assignbuster.com/c-arrays-guideline/

C++ arrays guideline – Paper Example Page 7

elements in array;]; * type-of-array: It is the type of elements that an array

stores.

If array stores character elements then type of array is ‘ char’. If array stores

integer elements then type of array is ‘ int’. Besides these native types, if

type of elements in array is structure objects then type of array becomes the

structure. * name-of-array: This is the name that is given to array. It can be

any string but it is usually suggested that some can of standard should be

followed while naming arrays. At least the name should be in context with

what is being stored in the array. * [number of elements]: This value in

subscripts [] indicates the number of elements the array stores. For example,

an array of five characters can be defined as : char arr[5]; 3.

How to Initialize an Array? An array can be initialized in many ways as shown

in the code-snippets below. Initializing each element separately. For example

: int arr[10]; int i = 0; for(i= 0; i; sizeof(arr); i++) { arr[i] = i; // Initializing

each element seperately } Initializing array at the time of declaration. For

example : int arr[] = {'1','2','3','4','5'}; In the above example an array of five

integers is declared. Note that since we are initializing at the time of

declaration so there is no need to mention any value in the subscripts []. The

size will automatically be calculated from the number of values. In this case,

the size will be 5.

Initializing array with a string (Method 1): Strings in C language are nothing

but a series of characters followed by a null byte. So to store a string, we

need an array of characters followed by a null byte. This makes the

initialization of strings a bit different. Let us take a look : Since strings are

nothing but a series of characters so the array containing a string will be

https://assignbuster.com/c-arrays-guideline/

C++ arrays guideline – Paper Example Page 8

containing characters char arr[] = {'c','o','d','e',''}; In the above

declaration/initialization, we have initialized array with a series of character

followed by a ‘? (null) byte. The null byte is required as a terminating byte

when string is read as a whole. Initializing array with a string (Method 2): har

arr[] = " code"; Here we neither require to explicitly wrap single quotes

around each character nor write a null character. The double quotes do the

trick for us. 4. Accessing Values in an Array Now we know how to declare and

initialize an array. Lets understand, how to access array elements. An array

element is accessed as : int arr[10]; int i = 0; for(i= 0; i; sizeof(arr); i++)

{ arr[i] = i; // Initializing each element separately } int j = arr[5]; // Accessing

the 5th element of integer array arr and assigning its value to integer 'j'. As

we can see above, the 5th element of array is accessed as ‘ arr[5]‘. Note that

for an array declared as int arr[5].

The five values are represented as: arr[0] arr[1] arr[2] arr[3] arr[4] and not

arr[1] arr[2] arr[3] arr[4] arr[5] The first element of array always has a

subscript of ’0? 5. Array of Structures The following program gives a brief

idea of how to declare, initialize and use array of structures. #include; stdio.

h; struct st{ int a; char c; }; int main() { struct st st_arr[3]; // Declare an

array of 3 structure objects struct st st_obj0; // first structure object st_obj0.

a = 0; st_obj0. c = 'a'; struct st st_obj1; //Second structure object st_obj1. a

= 1; st_obj1. c = 'b'; struct st st_obj2; // Third structure object st_obj2. a = 2;

st_obj2. c = 'c'; t_arr[0] = st_obj0; // Initializing first element of array with

first structure object st_arr[1] = st_obj1; // Initializing second element of

array with second structure object st_arr[2] = st_obj2; // Initializing third

element of array with third structure object printf("

https://assignbuster.com/c-arrays-guideline/

C++ arrays guideline – Paper Example Page 9

First Element of array has values of a = [%d] and c = [%c]

", st_arr[0]. a, st_arr[0]. c); printf("

Second Element of array has values of a = [%d] and c = [%c]

", st_arr[1]. a, st_arr[1]. c); printf("

Third Element of array has values of a = [%d] and c = [%c]

", st_arr[2]. a, st_arr[2]. c); return 0; } The output of the above program

comes out to be : $. /strucarr

First Element of array has values of a = [0] and c = [a] Second Element of

array has values of a = [1] and c = [b] Third Element of array has values of a

= [2] and c = [c] 6. Array of Char Pointers The following program gives a

brief Idea of how to declare an array of char pointers : #include; stdio. h; int

main() { // Declaring/Initializing three characters pointers char *ptr1 = "

Himanshu"; char *ptr2 = " Arora"; char *ptr3 = " TheGeekStuff"; //Declaring

an array of 3 char pointers char* arr[3]; // Initializing the array with values

arr[0] = ptr1; arr[1] = ptr2; arr[2] = ptr3; //Printing the values stored in array

printf("

[%s]

", arr[0]); printf("

[%s]

", arr[1]); rintf("

[%s]

", arr[2]); return 0; } The output of the above program is : $. /charptrarr

[Himanshu] [Arora] [TheGeekStuff] 7. Pointer to Arrays Pointers in C

Programming language is very powerful. Combining pointers with arrays can

be very helpful in certain situations. As to any kind of data type, we can have

https://assignbuster.com/c-arrays-guideline/

C++ arrays guideline – Paper Example Page 10

pointers to arrays also. A pointer to array is declared as : ; data type; (*;

name of ptr;)[; an integer;] For example : int(*ptr)[5]; The above example

declares a pointer ptr to an array of 5 integers. Lets look at a small program

for demonstrating this : #include; stdio. h; int main(void) { char arr[3];

char(*ptr)[3]; rr[0] = 'a'; arr[1] = 'b'; arr[2] = 'c'; ptr = ; arr; return 0; } In

the above program, we declared and initialized an array ‘ arr’ and then

declared a pointer ‘ ptr’ to an array of 3 characters. Then we initialized ptr

with the address of array ‘ arr’. 8. Static vs Dynamic Arrays Static arrays are

the ones that reside on stack. Like : char arr[10]; Dynamic arrays is a

popular name given to a series of bytes allocated on heap. this is achieved

through malloc() function. Like : char *ptr = (char*)malloc(10); The above

line allocates a memory of 10 bytes on heap and we have taken the starting

address of this series of bytes in a character pointer ptr.

Static arrays are used when we know the amount of bytes in array at

compile time while the dynamic array is used where we come to know about

the size on run time. 9. Decomposing Array into Pointers Internally, arrays

aren’t treated specially, they are decomposed into pointers and operated

there-on. For example an array like : char arr[10]; When accessed like :

arr[4] = 'e'; is decomposed as : *(arr + 4) = 'e' So we see above that the

same old pointers techniques are used while accessing array elements. 10.

Character Arrays and Strings Mostly new programmers get confused

between character arrays and strings. Well, there is a very thin line between

the two. This thin line only comprises of a null character ‘? If this is present

after a series of characters in an array, then that array becomes a string.

This is an array: char arr[] = {'a', 'b', 'c'}; This is a string: char arr[] = {'a',

https://assignbuster.com/c-arrays-guideline/

C++ arrays guideline – Paper Example Page 11

'b', 'c', ''}; Note : A string can be printed through %s format specifier in

printf() while an printing an array through %s specifier in printf() is a wrong

practice. 11. Bi-dimensional and Multi-dimensional Arrays The type of array

we discussed until now is single dimensional arrays. As we see earlier, we

can store a set of characters or a string in a single dimensional array. What if

we want to store multiple strings in an array. Well, that wont be possible

using single dimensional arrays. We need to use bi-dimensional arrays in this

case.

Something like : char arr[5][10]; The above declaration can be thought of as

5 rows and 10 columns. Where each row may contain a different name and

columns may limit the number of characters in the name. So we can store 5

different names with max length of 10 characters each. Similarly, what if we

want to store different names and their corresponding addresses also. Well

this requirement cannot be catered even by bi-dimensional arrays. In this

case we need tri-dimensional (or multi-dimensional in general) arrays. So we

need something like : char arr[5][10][50]; So we can have 5 names with max

capacity of 10 characters for names and 50 characters for corresponding

addresses.

Since this is an advanced topic, So we won’t go into practical details here.

12. A Simple C Program using Arrays Consider this simple program that

copies a string into an array and then changes one of its characters :

#include; stdio. h; #include; string. h; int main(void) { char arr[4];// for

accommodating 3 characters and one null '' byte. char *ptr = " abc"; //a

string containing 'a', 'b', 'c', '' memset(arr, '', sizeof(arr)); //reset all the bytes

so that none of the byte contains any junk value strncpy(arr, ptr, sizeof("

https://assignbuster.com/c-arrays-guideline/

C++ arrays guideline – Paper Example Page 12

abc")); // Copy the string " abc" into the array arr printf("

%s

", arr); //print the array as string rr[0] = 'p'; // change the first character in

the array printf("

%s

", arr);//again print the array as string return 0; } I think the program is self

explanatory as I have added plenty of comments. The output of the above

program is : $. /array_pointer abc pbc So we see that we successfully copied

the string into array and then changed the first character in the array. 13. No

Array Bound Check in a C Program What is array bound check? Well this is

the check for boundaries of array declared. For example : char arr[5]; The

above array ‘ arr’ consumes 5 bytes on stack and through code we can

access these bytes using : arr[0], arr[1], arr[2], arr[3], arr[4]

Now, C provides open power to the programmer to write any index value in

[] of an array. This is where we say that no array bound check is there in C.

SO, misusing this power, we can access arr[-1] and also arr[6] or any other

illegal location. Since these bytes are on stack, so by doing this we end up

messing with other variables on stack. Consider the following example :

#include; stdio. h; unsigned int count = 1; int main(void) { int b = 10; int

a[3]; a[0] = 1; a[1] = 2; a[2] = 3; printf("

b = %d

", b); a[3] = 12; printf("

b = %d

", b); return 0; } In the above example, we have declared an array of 3

https://assignbuster.com/c-arrays-guideline/

C++ arrays guideline – Paper Example Page 13

integers but try to access the location arr[3] (which is illegal but doable in C)

and change the value kept there.

But, we end up messing with the value of variable ‘ b’. Cant believe it? ,

check the following output . We see that value of b changes from 10 to 12.

$. /stk b = 10 b = 12 C++ arrays, arrays and loops In this tutorial, we are

going to talk about arrays. An array lets you declare and work with a

collection of values of the same type. Let’s say you want to declare four

integers. With the knowledge from the last few tutorials you would do

something like this: int a , b , c , d; What if you wanted to declare a thousand

variables? That will take you a long time to type. This is where arrays come

in handy. An easier way is to declare an array of four integers, like this: int

a[4];

The four separate integers inside this array are accessed by an index. Each

element can be accessed, by using square brackets, with the element

number inside. All arrays start at element zero and will go to n-1. (In this

case from 0 to 3.) Note: The index number, which represents the number of

elements the array is going to hold, must be a constant value. Because

arrays are build out of non-dynamic memory blocks. In a later tutorial we will

explain arrays with a variable length, which uses dynamic memory. So if we

want to fill each element you get something like this: int a[4]; a[0] = 1; a[1]

= 2; a[2] = 3; a[3] = 4; If you want to use an element, for example for

printing, you can do this: out ;; a[1]; Arrays and loops One of the nice things

about arrays is that you can use a loop to manipulate each element. When

an array is declared, the values of each element are not set to zero

automatically. In some cases you want to “ re-initialize” the array (which

https://assignbuster.com/c-arrays-guideline/

C++ arrays guideline – Paper Example Page 14

means, setting every element to zero). This can be done like in the example

above, but it is easier to use a loop. Here is an example: #include; iostream;

using namespace std; int main() { int a[4]; int i; for (i = 0; i ; 4; i++) a[i] =

0; for (i = 0; i ; 4; i++) cout ;; a[i] ;; '

'; return 0; } Note: In the first “ for loop” all elements are set to zero.

The second “ for loop” will print each element. Multi-dimensional arrays The

arrays we have been using so far are called one-dimensional arrays. Here is

an example of a one-dimensional array: int a[2]; 0| 1| 1| 2| Note: A one-

dimensional array has one column of elements. Two-dimensional arrays have

rows and columns. See the example below: int a[2][2]; | 0| 1| 0| 1| 2| 1| 4| 5|

Note: a[0][0] contains the value 1. a[0][1] contains the value 2. a[1][0]

contains the value 4. a[1][1] contains the value 5. So let’s look at an

example that initialize a two-dimensional array and prints each element:

#include; iostream; using namespace std; int main() { nt a[4][4]; int i , j; for

(i = 0; i ; 4; i++) { for (j = 0; j ; 4; j++) { a[i][j] = 0; cout ;; a[i][j] ;; '

'; } } return 0; } Note: As you can see, we use two “ for loops” in the

example above. One to access the rows the other to access the columns. You

must be careful when choosing the index number, because there is no range

checking done. So if you index (choose an element) past the end of the

array, there is no warning or error. Instead the program will give you “

garbage” data or it will crash. Arrays as parameters In C++ it is not possible

to pass a complete block of memory by value as a parameter to (for

example) a function.

It is allowed to pass the arrays address to (for example) a function. Take a

look at the following example: #include; iostream; using namespace std;

https://assignbuster.com/c-arrays-guideline/

C++ arrays guideline – Paper Example Page 15

void printfunc(int my_arg[], int i) { for (int n= 0; n ; i; n++) cout ;;

my_arg[n] ;; '

'; } int main() { int my_array[] = {1, 2, 3, 4, 5}; printfunc(my_array, 5);

return 0; } The function printfunc accepts any array (whatever the number of

elements) whose elements are of the type int. The second function

parameter (int i) tells function the number of elements of the array, that was

passed in the first parameter of the function. With this variable we can check

(in the “ for” loop) for the outer bound of the array. That’s all for this tutorial.

include ; iostream; using namespace std; int main() { int myarr[2][3]; for(int

r = 0; r ; 2; r++){ for(int c = 0; c ; 3; c++){ myarr[r][c] = r*c+1; } } for(r =

0; r ; 2; r++){ for(int c = 0; c ; 3; c++){ cout ;; myarr[r][c] ;; " "; } cout ;;

endl; } return 0; } #include ; iostream; using namespace std; int

minArray(int arr[][5], int rowCap, int colCap) { int m = arr[0][0]; for (int r =

0; r ; rowCap; r++) for (int c = 0; c ; colCap; c++) if (arr[r][c] ; m) m = arr[r]

[c]; return m; } int main() { int x[3][5] = { {13, 4, 35, 22, 3}, {32, 3, 7, 3,

2}, {3, 4, 4, 4, 2}}; cout ;; minArray(x, 3, 5) ;; endl; return 0; }

https://assignbuster.com/c-arrays-guideline/

	C++ arrays guideline

