Free report on calculate vp vpp and frequency

ASSIGN BUSTER

3. What is the volts/div setting and the time/div setting after using auto scale?

Answer: Volt/div setting=1V, time/div= $2 \mu \mathrm{~s}$
5. What is the new time/div setting?

Answer $=1,340 \mu \mathrm{~s}$

Answer: $\mathrm{Vpp}=4.71 \mathrm{~V} \mathrm{Vp}=2.25 \mathrm{~V}$, Frequency $=1 / \mathrm{T}=1 / 1340=0.75 \mathrm{kHz}$
7. $\mathrm{t}=740 \mu \mathrm{~s}$, Freq $=1 / \mathrm{T}=(1 / 740 \mu \mathrm{~s})=1.6 \mathrm{kHz}$
8. $V p=4.761 V$

Calculations

Percentage diff for $\operatorname{Vpp}(\mathrm{V})=(\mathrm{Vpp2-Vpp1}) / \mathrm{Vpp1}=(4.76-4.71) / 4.76=(0$. $05 / 4.76) \times 100=1.05 \%$

Percentage diff for time $(\mu \mathrm{s})=(\mathrm{t} 1-\mathrm{t} 2) / \mathrm{t} 2=(1340-740) / 740=(600 / 1340) \mathrm{x}$ $100=44.78 \%$

Percentage diff for frequency $(k H z)=(f 2-f 1) / f 1=(1.6-0.75) / 1.6=53 \%$

Questions and Answers

Why is there a percentage difference between the two methods of finding frequency and Vpp?

Answer: This is as a result of the difference in the accuracy of the two methods. The cursors are more accurate than the visual estimates.

What happens to the signal if you make the time/div very small? Very big?

Answer: when the value of the time/div is very small the measured waveform will appear too big and the signal will look like a continuous line. This is because at that point in time the beam sweeps very fast that its motion is
invisible to the eye.
Answer: when the value of the time/div is very big the waveform appears too smooth that the shape will not be seen.

