The equilibrium constant of an ester hydrolysis reaction

ASSIGN BUSTER

The Equilibrium Constant of an Ester Hydrolysis Reaction Abstract: The results from this experiment show four different Kc equilibrium constants of: . 1522 for bottle two, . 1853 for bottle three, . 2094 for bottle four, and . 2678 for bottle five. The average Kc value came out to be . 2037 for all four bottles. Purpose: The purpose of this lab is to determine the equilibrium concentrations of an organic acid, an alcohol, an ester, and water in four bottles with varying measurements of each compound in of the four solutions. Once the concentrations are determined, one is then to discover the Kc, equilibrium constant, of those solutions by dividing the concentrations of alcohol and acid by the concentrations of ester and water. Methods/Procedure: First begin by mixing up and standardizing a 500 mL solution of NaOH to titrate. For each of the six bottles, measure the directed amounts of ester, water, alcohol, and HCl . The bottles of different solutions will be left to come to equilibrium for two weeks. Once the NaOH is standardized, the solutions in the bottles have come to equilibrium, and a molarity is calculated, use the molarity of NaOH to discover how many mols were used to neutralize the solutions in each bottle. Once all of the calculations are complete, use an ICE chart to discover the mols of ester, water, acid, and alcohol at equilibrium to then calculate the Kc for each bottle. After a Kc has been calculated for all bottles, the last step is to determine an average Kc for all of the solutions. Calculations/Results: Grams of KHP needed: . $7 \mathrm{~mol} \times 35 \mathrm{ml} \times 1 \mathrm{molKHP} \times 204 \mathrm{gKHP} 1000 \mathrm{ml} \times 1 \times 1 \mathrm{molNaOH}$ x $1 \mathrm{molKHP}=5.00 \mathrm{gKHP}$ Grams of $\mathrm{NaOH}: .7 \mathrm{molNaOH} \times .500 \mathrm{~L} \times 1 \mathrm{~mol} 1 \mathrm{~L} \times 1 \times$ $40 \mathrm{~g} \sim 14 \mathrm{gNaOH}$ Mass of dish: 1.80 g Mass of bottle $1: 17.1145 \mathrm{~g}$ Mass of HCl 1: 4.8778 g Mass of NaOH 14.0 g Mass of bottle 1A: 17. 3521 g Mass of HCl

1A: 5. 2319 g Mass of dish: 2.0097 g Mass of dish and KHP: 6.0548 g Mass of https://assignbuster.com/the-equilibrium-constant-of-an-ester-hydrolysisreaction/

KHP: 5. 0378 g mL of NaOH used to neutralize KHP: 1. 36. 90 mL 2.30 .80 mL 3. 36.40 mL g of KHP: 1. 5.0378 g 2.4 .2074 g 3.4 .9722 g Molarity of NaOH : 6690M |. $6689 \mathrm{M} \mid$ Avg M: . $6688 \mathrm{M} \mathrm{NaOH} \mid 5.0378 \mathrm{gKHP} \times 1 \mathrm{molKHP} \mathrm{x}$ $1 \mathrm{molNaOH} \times 1 \times 1000 \mathrm{~mL} 1 \times 204.2 \mathrm{~g} \times 1 \mathrm{molKHP} \times 36.90 \mathrm{~mL} \times 1 \mathrm{~L}=$. 6686M mL of NaOH used: 1A: $6.20 \mathrm{~mL}-24.90 \mathrm{~mL}=18.70 \mathrm{~mL}|1: 17.00 \mathrm{~mL}| 2: 60$. 54mL | 3: $58.60 \mathrm{~mL}|4: 45.55 \mathrm{~mL}| 5: 40.75 \mathrm{~mL}$ | Ethanol: Water: Ethyl Acetate: Density: . 7893g/mL Density: . 9982g/mL Density: . 9003g/mL Molar Mass: $46.07 \mathrm{~g} / \mathrm{mol}$ Molar Mass: $18.02 \mathrm{~g} / \mathrm{mol}$ Molar Mass: $88.11 \mathrm{~g} / \mathrm{mol} \mathrm{mL}$ of solutions in each bottle: Bottle \# | $3 \mathrm{M} \mathrm{HCl}(\mathrm{mL})|\mathrm{H} 2 \mathrm{O}(\mathrm{mL})|$ Ester (mL) | Alcohol (mL) | $1|5.00| 5.00|0| 0|1 \mathrm{~A}| 5.00|5.00| 0|0| 2|5.00| 0 \mid$ $5.00|0| 3|5.00| 1.00|4.00| 0|4| 5.00|3.00| 2.20|0| 5|5.00| 2$. $00|2.00| 1.00 \mid$ Bottles 1 and 1A M HCl: $17.00 \mathrm{mLNaOH} x .6688 \mathrm{molNaOH}$ x $1 \mathrm{molHCl} \times 11 \times 1000 \mathrm{ml} \times 1 \mathrm{molNaOH} \times .005 \mathrm{LHCl}=2.27 \mathrm{MHCL} \times .005 \mathrm{~L}=$. 01137molHCl . 01251 molHCl Average mol HCl of bottles 1 and 1A: (. $01251 \mathrm{~mol}+.01137 \mathrm{~mol}) / 2=.01194 \mathrm{molHCl} \mathrm{Mol} \mathrm{NaOH}$ for bottles 2-5: . $6688 \mathrm{MNaOH} \times 1 \mathrm{~L} \times 60.54 \mathrm{mLNaOH} 1 \mathrm{~L} \times 1000 \mathrm{~mL} \times 1=.04049 \mathrm{molNaOH}$. 03919molNaOH . 03046moINaOH . 02725moINaOH Density of HCl: 5 . $2319 \mathrm{gHCl} \times 11 \times 5.00 \mathrm{~mL}=1.046 \mathrm{~g} / \mathrm{mLHCl}$ Grams of HCl and $\mathrm{H} 2 \mathrm{O}: 1$. $046 \mathrm{gHCl} \times 5.00 \mathrm{mLH} 2 \mathrm{O} 1 \mathrm{~mL}=5.230 \mathrm{gHCl}+\mathrm{H} 20$ Grams of $\mathrm{HCl}: .01194 \mathrm{molHCl}$ x $36.54 \mathrm{gHCl} ~ \mathrm{~mol} \mathrm{HCl}=.4352 \mathrm{gHCl}$ Grams of HCl and $\mathrm{H} 2 \mathrm{O}-\mathrm{Grams}$ of HCl : 5. $230 \mathrm{gHCl}+\mathrm{H} 2 \mathrm{O}-.4352 \mathrm{gHCl}=4.794 \mathrm{gH} 2 \mathrm{O}$ from 5.00 mL of HCl in bottles 1-5 Grams of H 2 O made + grams H 2 O given for bottles 2-5: 4. $794 \mathrm{gH} 2 \mathrm{O}+0$. $00 \mathrm{mLH} 2 \mathrm{O} x .9982 \mathrm{gH} 2 \mathrm{O} / \mathrm{mL}=4.794 \mathrm{gH} 2 \mathrm{O} 5.792 \mathrm{gH} 2 \mathrm{O} 7.789 \mathrm{gH} 2 \mathrm{O} 6$. 790gH2O Grams to mols of H2O for bottles 2-5: 4. 794gH2O x 1molH2O1 x 18. $02 \mathrm{gH} 2 \mathrm{O}=.2661 \mathrm{molH} 2 \mathrm{O} .3214 \mathrm{molH} 2 \mathrm{O} .4322 \mathrm{molH} 2 \mathrm{O} .3768 \mathrm{molH} 2 \mathrm{O}$ Mols of ester for bottles 2-5: 5. 00mLester x. 9003gester x 1mol ester1 x https://assignbuster.com/the-equilibrium-constant-of-an-ester-hydrolysisreaction/
$1 \mathrm{~mL} \times 88.11$ gester $=.05109 \mathrm{mols}$ ester .4087 mols ester .02248 mols ester. 02044mols ester Mols of acid for bottles 2-5: 60. $54 \mathrm{mLNaOH} \times 1 \mathrm{x}$. $6688 \mathrm{molNaOH} \times 1 \mathrm{molacid} 1 \times 1000 \mathrm{~mL} \times 1 \mathrm{~L} \times 1 \mathrm{molNaOH} \times 1=.04049 \mathrm{~mol}$ acid . 03919molacid . 03046molacid . 02725molacid Total mols of acid - mols HCl for bottles 2-5: . 04049mol total acid $-.01194 \mathrm{~mol} \mathrm{HCl}=.02855 \mathrm{~mol}$ organic acid .02725 mol organic acid .01852 mol organic acid .01531 mol organic acid Mols of alcohol for bottle 5: 1. 00mLalcohol x. 7893galcohol $\times 1$ mol alcohol $1 \times 1 \mathrm{~mL} \times 46$. 07 galcohol $=.01713 \mathrm{~mol}$ alcohol Ice Charts for bottles 2-5: ESTER (mol) | WATER (mol) | ACID (mol) | ALCOHOL (mol) | I: . 05109 |. $2661|0| 0|C:-.02855|-.02855|-.02855|-.02855 \mid E: .02254$ |. 2376 |. 02855 |. 02855 | ESTER (mol) | WATER (mol) | ACID (mol) | ALCOHOL (mol) | I: . 04087 | . $3214|0| 0|C:-.02725|-.02725|-.02725|$ -. 02725 | E: . 01362 |. 2942 |. 02725 |. 02725 | ESTER (mol) | WATER (mol) | ACID (mol) | ALCOHOL (mol) | I: . 02248 | . 4322 | $0|0| \mathrm{C}:-.01852 \mid$-. $01852|-.01852|-.01852|E: .00396| .4137|.01852| .01852 \mid E S T E R$ (mol) | WATER (mol) | ACID (mol) | ALCOHOL (mol) | I: . 02044 | . $3768|0|$. 01713 | C:-. $01531|-.01531|-.01531|.01531| \mathrm{E}: .00513 \mid .3615$ |. 01531 |. 03244 | Kc for bottles 2-5: $\mathrm{Kc}=.02855[.02855] .0254[.2376]=$. 1522.1853.2094.2678 Avg Kc: . $1522+.1853+.2094+.2678=.8147$ $.8147 / 4=.2037$ Discussion: A known error in this experiment with this data is the mass of hydrochloric acid measured for bottle 1 . The mass was below 5 grams (4. 8778 g) which threw the calculations off. To compensate for the poor data, an average of the two masses of hydrochloric acid was taken, and then the number of moles was found to get a better approximation of what the number of moles should be. Another possible error in this experiment was not having adequate time for the solutions to equilibrium completely. If https://assignbuster.com/the-equilibrium-constant-of-an-ester-hydrolysisreaction/
the solutions had not fully reached equilibrium the equilibrium constant would be off for whichever solutions, if not all, that had not come to equilibrium. The Kc values were all approximately one tenth off of each other. In theory, the Kc values should all be the same which indicates that there is a high probability that the solutions had not fully reached equilibrium. In conclusion, the results would have been closer and more exact had the solutions had more time to come to equilibrium as well as if the mass of hydrochloric acid was closer to where it should have been.

