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Introduction Secret Sharing Schemes were independently introduced by two 

mathematicians – Adi Shamir and George Blakley in 1979. The scheme 

proposed by the former one bases on Lagrange interpolation and modular 

arithmetic, whereas that of the latter one bases on planes. Secret sharing 

schemes have a gamut of application in real-life. They are used whenever 

the piece of information required to access the secret is strongly prevented 

from getting unauthorized entities. Most common applications are in military 

and banking – an industry in which I want to develop my professional career. 

Though in this paper quite small prime numbers are used in examples, the 

ones used in real life are vastly bigger. The aim of this work is to describe 

the Shamir’s Secret Sharing Scheme. 

The goal of Shamir’s Secret Sharing Scheme is to divide secret  into  pieces, 

called shares, in such a way that: 1.     Knowledge of any  or more shares 

makes  easily computable. It means that the complete secret  can be 

reconstructed from any combination of t pieces of data. 2.     Knowledge of 

any  or fewer shares leaves  completely undetermined. Possible values for

seem as likely as with knowledge of 0 pieces of information. In other words, 

secret  cannot be reconstructed with fewer than  pieces. 

This is called  threshold scheme. In a case when  every piece of the original 

secret is required to reconstruct the secret.   The main idea behind this 

scheme is that at least 2 points are required to define a line, at least 3 points

to define a parabola, at least 4 points to define a curve of degree 3 and so 

on. In general, it takes  points to define a polynomial of degree  The 

polynomial is retrieved with the use of Lagrange interpolation. 
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As the scheme’s main goal is to provide security, all the computations are 

conducted in a finite field. Otherwise, unauthorized person would be able to 

narrow the set of possible secrets down with trial and error. Use of modular 

arithmetic allows full security of the secret. Bearing in mind the significance 

of modular arithmetic and Lagrange interpolation, the work starts with 

explanation of these concepts and leads to the main topic: Shamir’s Secret 

Sharing Scheme. My interest in this issue was prompted by this year’s rise of

Bitcoin’s value on international markets. As I am an active trader, I wanted to

get to know the technical aspect of cryptocurrencies. The world of 

cryptography intrigued me and I started to dig deeper. 

One day, I stumbled across secret sharing. The simplicity and efficiency of 

the scheme proposed by Shamir astonished me. During my summer 

internship in one of the biggest Polish banks – ING Bank – I had an 

opportunity to talk to an IT Specialist. 

I asked him about the use of this scheme in real life and his answer was that 

it and its generalizations are widely used, not only in that particular 

organization. It proved to me that the topic of Shamir’s Secret Sharing 

Scheme is worth further investigation. Modular arithmeticWithout the use of 

modular arithmetic, it would be possible to retrieve the polynomial without 

the knowledge of all the required points – security of encrypted information 

would be vulnerable. Moreover, use of a modular arithmetic, allows 

computers to conduct computations faster. In a later part of this work this 

concept will be applied to Shamir’s Secret Sharing Scheme. 
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NotationIf  is an integer number greater than 0 then “ x mod m” indicates 

remainder of division of “ x” over “ m”. Example1.     12 mod 7 = 52.     3682

mod 64 = 34 Let’s consider a set of . 

In this set operation of addition can be defined in a following way:       The 

operation of addition can be expanded to a table. Let’s consider one in a set 

0 1 2 3 4 5 6 0 0 1 2 3 4 5 6 1 1 2 3 4 5 6 0 2 2 3 4 5 6 0 1 3 3 4 5 6 0 1 2 4 4

5 6 0 1 2 3 5 5 6 0 1 2 3 4 6 6 0 1 2 3 4 5    Definition1 Identity element of 

addition in a set  is such element , that   One can easily deduce that the 

identity element of addition in a set  is 0. Definition Additive inverse element 

to the element  in a set  is such element  that   Additive inverse element to

is denoted by . Let’s notice that every element in a set  has an additive 

inverse element. Moreover, if  is an additive inverse element to , then  is an 

additive inverse element to  Example:                    Consider set . Then:  Let’s 

JW1 consider a set . 

In this set one can define multiplication in a following 

manner:                                                                        Example: Let’s 

consider a set  . For this set one can construct a table of multiplication as 

follows:    0 1 2 3 4 5 6 0 0 0 0 0 0 0 0 1 0 1 2 3 4 5 6 2 0 2 4 6 1 3 5 3 0 3 6 

2 5 1 4 4 0 4 1 5 2 6 3 5 0 5 3 1 6 4 2 6 0 6 5 4 3 2 1    Definition Identity 

element of multiplication in a set  is such element , that   It is not hard to 

notice that identity element of multiplication in a set is 1. 

DefinitionMultiplication inverse element to element  in a set  is such element 

that  Multiplication inverse element to  is denoted by . ExampleLet’s consider

a set . Then:   Theorem. Element  in set  has a multiplication inverse element

if is coprime with . It means that GCD () = 1. 
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What results from this theorem is that when  is a prime number, then in a set

every element different from 0 has a multiplication inverse element.

Moreover, if  is an inverse element to , then  is an inverse element to

Multiplication inverse elements are crucial for Shamir’s Secret Sharing 

Scheme. Concept of multiplication inverse elements allows to avoid such 

situation in which one cannot compute the polynomial from Lagrange 

interpolation in a modular arithmetic. It is because multiplication inverse 

element is determined unambiguously. On the other hand, if one wouldn’t 

apply the theory of identity elements when using Lagrange interpolation, 

they would not only obtain wrong result, but most probably would not be 

able to even conduct computations. It is because operation of division does 

not exist in modular arithmetic and instead is substituted with multiplication 

by multiplication inverse element. Such situation is shown below: Suppose  . 

Let’s divide this polynomial by a factor of 3. It is because  and  Order of 

operations in modular arithmetic follows “ PEMDAS” rule. Lagrange 

InterpolationLet’s consider  points on a plane: . These points are called “ 

nodes. 

” Lagrange Interpolation’s aim is to find such polynomial  of the degree at 

most that for all  As one can see, it squares with the main idea of Shamir’s 

Secret Sharing Scheme. Coefficients of  and computations can be within or

Lagrange polynomial can be represented with the use of pi notation. This 

symbol represents a multiplication of a bunch of terms. For instance:

Theorem3. Polynomial  described above is always well-defined and is given 

by the following formula: Where  Lagrange Interpolation can be conducted in

sets where  is a prime number. 
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Furthermore, it has to be prime, because we want all the elements different 

from 0 to have an multiplication inverse element. Let’s use concepts of 

modular arithmetic and Lagrange interpolation in practice. ExampleLet’s 

consider  and the following nodes: . 

One can construct a Langrange polynomial of order at most 3 from them as 

follows:     In order to check my computations, I created an excel formula.

The outcome gave the coordinates of nodes, which proved the Lagrange 

interpolation to work properly.  Shamir’s Secret Sharing Scheme Let  be a 

finite set of participants. The value of , a secret, is chosen by a  special 

participant, called “ dealer”. 

The dealer is denoted by  and it is assumed that   When  wants to share the 

secret S with the participants in , he gives each participant a piece of 

information called a “ share”. The shares should be distributed secretly, so 

that no participant knows the share given to another participant.

SchemeThe scheme is divided into preliminary phase and actual execution. 

The data generated during the first one is publicly known. 

It consists of the following: 1.      determines a finite set , where  is a prime 

number and 2.      chooses  pairwise, non-zero elements of denoted by (those

are called identifiers),  ( For  gives the value  to   3.     choses a threshold t, 

where  After this is done, main phase takes place. 

The information created during this stage is not publicly known. Assume

wants to share a  4.      secretly chooses  elements of  which are denoted . 

https://assignbuster.com/introduction-the-ones-used-in-real-life-are/



Introduction the ones used in real life ... – Paper Example Page 7

5.     For ,  computes , where  6.     For ,  sends the share  to  accordingly. It is

important to mention that shares are sent by a safe channel. It is to increase 

security and privacy, which is a main concern of cryptography. 

Later, a subset of participants  will gather their shares in order to calculate 

the secret . If  then they will be able to find the value of  with the shares they

collectively own. Otherwise secret is impossible to find. They will use 

Lagrange interpolation in order to retrieve the secret. 

Assume that the secret  is 15. Let’s construct an example following the order

of operations of scheme presented above.  1. 

D determines a finite set 2.     D choses 5  identifiers and gives them to 

participants respectively. 3. 

D chooses a threshold . The preliminary phase is done. Now the main phase 

begins. 4.     D chooses 2 elements  His polynomial is therefore  5.     D 

computes . 

For this purpose, I created an excel formula displayed below. The results are 

as follows: 6.     D sends shares to participants accordingly. 

Later a required subset of participants  gathers and using Lagrange 

interpolation they try to retrieve the polynomial. The following calculations 

are conducted in online.        As it can be seen, free coefficient, 15, is equal 

to the secret  It means that the scheme worked properly and the required 

value was found. 
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It is worth noticing that, as we are looking for a secret which is a free 

coefficient, one could compute . Such operation would ease the 

computations.  In real life, however, numbers used in the scheme are of 

much bigger magnitude. It is due to security issues: in case of usage of small

set, e. g. 

mod 17, one could try all the possible (here 17) items and they would finally 

“ guess” a proper one. Use of big sets eliminates this 

threat.  ConclusionsShamir’s Secret Sharing Scheme is quite an easy tool to 

divide a secret. During the work on this paper I was fascinated with Shamir’s 

simplistic approach to a complex issue of sharing a secret. 

What delighted me the most was the way in which mathematics can be used 

to solve serious, real-life problems. It realized me that I prefer concepts of 

applied mathematics, instead of the ones used in pure mathematics. 

Moreover, the modular arithmetic seemed to me very funny way to exercise 

some computational skills and  I enjoyed working with it a lot. Lagrange 

interpolation was an unknown for me way to retrieve a polynomial. I haven’t 

heard about it before, but now, as I got to know it better, I see many 

applications, even in some tasks from the IB syllabus.   BibliographyGraham, 
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