
Simulation of the
aloha protocol

https://assignbuster.com/simulation-of-the-aloha-protocol/
https://assignbuster.com/simulation-of-the-aloha-protocol/
https://assignbuster.com/

Simulation of the aloha protocol – Paper Example Page 2

Abstract-The present essay is a tutorial on the OMNeT++ simulation

environment, through the analysis of the known ALOHA protocol. The model

implements the ALOHA random access protocol on the Link layer, and

simulates a host to server instant broadcast. ALOHA is rather simple yet

convenient to demonstrate the potential of OMNeT++ in simulating wireless

protocols. The final part evaluates the pure and the slotted ALOHA

variations, in regard to the theoretical models.

Introduction
OMNeT++ is a discrete event simulation (DES) environment, developed by

Andras Varga as public source, and is accompanied by Academic Public

License, which means that it is free for nonprofit academic use. The intention

behind OMNeT++ was the development of an open source generic

simulation environment, not exclusively dedicated to network simulations as

the more known ns-2, or the commercial Opnet. The environment offers

instead, a generic and flexible platform to develop simulation frameworks

dedicated to complex IT systems, as wireless and sensor networks, the

classic IP and IPv6 stacks, queuing networks, optical networks and various

hardware architectures.

Typical example of a framework that provides simulation components for IP,

TCP, UDP, Ethernet and MPLS, is the INET Framework and the MiXiM, which is

an aggregation of several frameworks for mobile and wireless simulations.

The OMNeT++ ver. 4. 0 is built on the known Eclipse CDT ver. 5. 0, and uses

most of its resources. It is offered for Windows and Linux operating systems.

The core of the models is coded in C++, in Linux uses the gcc compiler and

in Windows uses the MinGW port for the gcc suite. There is a commercial

https://assignbuster.com/simulation-of-the-aloha-protocol/

Simulation of the aloha protocol – Paper Example Page 3

version called OMNEST, with no significant accessories than the open

version, except the optional use of the native Visual C++ compiler for the

Windows platform.

The ALOHA protocol was one of the oldest random access protocols, invented

by Norm Abramson in 1969. The first wireless network, implementing packet

switching over radio, used the pure ALOHA variation, have initially

established in Hawaii. Later Abramson interfaced the ALOHAnet with the

ARPAnet, the primitive form of internet. The ALOHA have inspired the

creation of CSMA/CD and the birth of Ethernet. Finally, the random access

protocol has evolved to contemporary CSMA/CA, the MAC layer of Wi-Fi. The

slotted ALOHA and the later pure ALOHA have simple implementations,

appropriate for simulation. It uses only the host to server broadcast instant,

but is adequate to calculate the maximum channel capacity and

demonstrate some other interesting attributes, as well.

OMNeT++ DESCRIPTION
1. The Structure of Models

2. OMNeT++ is based on C++ programming and follows the object-

oriented approach with classes and class instances, the so-called

objects. The simulation model consists of modules, which communicate

by message passing. The core element is the simple module, which is

written in C++, and constitutes an instance of a module type from the

simulation class library. The next structural element in the hierarchy is

the compound model, which is formed from simple modules or other

compound models. Every module, simple or compound, has ports to

communicate with the external environment, called gates. Gates could

https://assignbuster.com/simulation-of-the-aloha-protocol/

Simulation of the aloha protocol – Paper Example Page 4

be bidirectional or could be restricted to input or output. Modules are

connected through their gates via connections and they communicate

by exchanging messages, via these connections.

The block diagram in Fig. 1 depicts the internal module structure

according to the declared hierarchy, in OMNeT++. The connections are

limited within the module range but the message exchange can be

established across hierarchy levels. This is applicable in the case of

modeling wireless systems and the simulation of ALOHA stations will

make use of it. Otherwise, messages are traveling through the chain of

connections. Modules have parameters, which are used to pass

initialization data during the initiation of the simulation. The compound

models can pass parameters to the contained sub-modules. The final

model which contains the aggregate of the modules is called network

model, is represented as a class and each simulation run is executed

on an instance of this class.

3. The NED language

4. The structure of the simulation in OMNeT++ is based on the network

description language (NED). The NED includes declarations for the

simple modules and definitions for the compound modules and the

network model. The language programming is accomplished by the

integrated graphic editor, as shown in Fig. 2 or the text editor, as

shown in Fig. 3. Both editors are producing equivalent code, and the

programmer can switch from one another without any derogation.

5. The programming model

https://assignbuster.com/simulation-of-the-aloha-protocol/

Simulation of the aloha protocol – Paper Example Page 5

6. The typical code development includes the following steps: The

programmer creates the network model, by creating the appropriate

network_name. ned file, using the IDE. The NED file describes the

network name and the topology, which are the names of the sub-

modules, simples and compounds. Every sub-module should have its

own module_name. ned file, which includes the parameter declarations

and other meta-data. As mentioned, the behavior of every simple

module is expressed in C++, so there should be two specific files, the

module_name. cc and the module_name. h, for every simple module.

These files are compiled during simulation execution by the supporting

C++ compiler, and linked with the simulation kernel and libraries.

The programmer usually tests the behavior of the simulation model

according to different inputs. These could be entered manually by the

user, during simulation execution, or could be included in a

configuration file. Generally, there is a special type of file the omnetpp.

ini that contains these parameters and the rest of the building blocks,

to support user interaction. The IDE includes an editor for the

initialization files, which can switch between form view, as shown in

Fig. 4, and source view, as shown in Fig. 5. The two fields are

equivalent.

There are two fundamental methods to develop C++ code for

programming the simple module behavior: The co-routine based and

the event processing function. In the first approach, every module

executes its own threat of code, which is activated every time it

receives a message from the simulation kernel. In the last approach,

https://assignbuster.com/simulation-of-the-aloha-protocol/

Simulation of the aloha protocol – Paper Example Page 6

the simulation kernel calls the module function, having the specific

message as argument. Prior to main() function execution, an

initialization function declares variables and objects and before

program termination, a finalization function saves the data logged

during simulation, and produces histograms.

7. OMNeT++ Architecture and Potentiality

8. The following Fig. 6 presents the internal logic structure of OMNeT++.

The first block is the model component library, which the programmer

develops in C++, and contains the compiled code of simple and

compound modules. The simulation kernel and the class library (SIM)

instantiates the modules and build the concrete simulation model. The

user interface libraries (Envir and Cmdenv or Tkenv) provide the

simulation environment, which defines the source of input data, the

sink of simulation results and the debugging information. It controls

the simulation execution, visualization and animation.

Cmdenv provides only command line and text mode input-output, and

it is more appropriate for batch simulations. Tkenv is the graphical user

interface (GUI) of OMNeT++. It provides automatic animation, module

output windows and object inspectors. The following Fig. 7 depicts an

active simulation output through OMNeT++/Tkenv.

OMNeT++ includes very powerful tools to visualize the interaction

among modules. A sequence chart diagram provides a way to inspect

the timing of the events during simulation by extracting data from an

event log file. During the finalization routine, the logged data are saved

to specific result files, the vectors in network_name. vec and the

https://assignbuster.com/simulation-of-the-aloha-protocol/

Simulation of the aloha protocol – Paper Example Page 7

scalars in network_name. sca files, respectively. For the result analysis,

OMNeT++ produces the analysis file network_name. anf, which

contains aggregated data in vectors and scalars plus any histograms,

created during the final stage. All the types of data can be further

processed by using pattern rules, in “ datasets and charts” section, to

produced advanced charts and graphs. In the ALOHA simulation most

of the available choices are used for demonstration.

Aloha Simulation
1. Background Theory

2. The slotted ALOHA is the most simple random access protocol. The

transmitting station always broadcasts at the full rate R of the channel.

The transmission initiates at the beginning of the slot, which is

common for the aggregate of the stations. If two or more stations

transmit simultaneously, then the condition is called collision and all

the stations involved, after a random time different for each,

retransmit the frame until successful delivery. The procedure is

presented at the following figure:

The slotted ALOHA protocol allows each station to transmitat at the

channel’s full speed R, but requires slots to be synchronized in all the

stations, something not nessesary for the unslotted or pure ALOHA.

The following assumtions are made to simplify simulation:

 The source generates single frames of length L bits. The inter-

arrival times between frames follow exponential distribution.

https://assignbuster.com/simulation-of-the-aloha-protocol/

Simulation of the aloha protocol – Paper Example Page 8

 If R bps is the capacity of the wireless link then the slot time is

set equal to the transmission time of each frame, which is:

tframe= LR sec.

 All nodes are synchronized and transmit frames only at the

beginning of a slot.

 If a node has a new frame to send, it waits until the beginning of

the next slot.

 If two or more frames collide, then their hosts retransmit after

random time, following exponential distribution.

 If there is no collision, then the node transmits its next frame

following exponential distribution.

I define N the number of stations operating the slotted ALOHA protocol

and p the probability of each station to transmit in the next slot. The

probability for the same station to do not transmit in the next slot is

then 1-p, and for the rest of the stations is 1-pN-1. Therefore, the

probability for a station to have a successful transmission during the

next slot is to transmit and the rest of the stations to do not transmit,

so it is p1-pN-1, and because there are N stations, the probability that

an arbitrary node has a successful transmission is Np1-pN-1.

A slot where a single station transmits is called a successful slot. The

efficiency of slotted ALOHA is defined as the long run fraction of

successful slots, which is:

Ep= Np1-pN-1 (1)

To find the maximum efficiency, we seek p* that maximizes (1). Then:

https://assignbuster.com/simulation-of-the-aloha-protocol/

Simulation of the aloha protocol – Paper Example Page 9

E’p= N1-pN-1-NpN-11-pN-2= N1-pN-21-p-pN-1

If E’p= 0 then p*= 1N . Using this value, the maximum efficiency is:

Ep*= N1N1-1NN-1= 1-1NN-1= 1-1NN1-1N (2)

For a large number of active stations, the maximum efficiency accrues

from (2) as N approaches infinity:

limN?? Ep*= limN?? 1-1NNlimN?? 1-1N= 1e1= 1e= 0. 368 (3)

From (3), the maximum efficiency of slotted ALOHA is 0. 368 or 36. 8%

The unslotted version or pure ALOHA protocol does not have the

restriction of slot synchronizing, and the station is able to broadcast

when a new frame is available. So pure ALOHA is a full-decentralized

random access protocol. When a transmitting station detects a

collision, after completing the transmission, it retransmits the frame

with probability p. If it chooses to postpone the transmission for a

single frame transmission period tframe= LR sec, then the probability

is (1-p). The figure below depicts transmissions and collisions in the

unslotted channel.

The maximum efficiency of pure ALOHA protocol is calculated similarly

as the slotted ALOHA. The only difference here is that the rest of the

stations should have not begun transmitting before and should not

begin during the broadcast of the given station. The probability that

the rest of the stations remain idle is 1-pN-1 and the probability that

they remain idle is 1-pN-1 again. Therefore, the probability that the

given station will have a successful transmission is p1-p2N-1.

https://assignbuster.com/simulation-of-the-aloha-protocol/

Simulation of the aloha protocol – Paper Example Page 10

Again, we seek the value of p* that maximizes (4), which is the

probability of successful transmission for the sum of the N stations.

Ep= Np1-p2N-1 (4)

E’p= N1-p2N-2-Np2N-11-p2N-3= N1-p2N-31-p-p2N-1

If E’p= 0 then p*= 12N-1 . Using this value the maximum efficiency is:

Ep*= N2N-11-12N-12N-1 (5)

From (5), the maximum efficiency accrues as N approaches infinity,

which is:

limN?? Ep*= 121e= 12e (6)

From (6) I assume that the maximum efficiency, for the pure ALOHA

protocol, is 0. 184 or 18. 39%, the half of slotted ALOHA.

Another useful diagram is in Fig. 10. It depicts the apparent superiority

of slotted ALOHA over the pure ALOHA protocol, despite the limitations

that turn it to non-functional. The normalized total traffic is the

aggregate traffic, which generated by the source of the station, divided

by the channel capacity R and the normalized throughput ? is the

average successful traffic (non-collided) divided by R. The slotted

ALOHA achieves double throughput than the pure ALOHA and achieves

its maximum efficiency when the generated traffic rate equals the

channel’s capacity R. The pure ALOHA although, achieves its maximum

efficiency when the generated traffic equals to R/2.

3. Model Development

 NED language

https://assignbuster.com/simulation-of-the-aloha-protocol/

Simulation of the aloha protocol – Paper Example Page 11

 The following paragraphs describe the process of creating a

functional model for the simulation of ALOHA protocol in OMNeT+

+. The object of simulation is to study the behavior of the ALOHA

model and to confirm the theoretical values of maximum

efficiency for pure and slotted ALOHA. The ALOHA random access

protocol is peer based and does not use a server-client

architecture. It is convenient to study the effect of collisions and

random retransmissions only in the case when one host is

receiving (becomes server) and the rest of the hosts are

transmitting.

The first step is to develop the NED code that describes the

network Aloha. The following Aloha. ned file creates the Aloha

network, which consist of simple modules, one called server and

a number of hosts, equal to numHosts parameter. The txRate

defines the transmission rate R, of the wireless channel, and

slotTime defines the type of protocol. Zero means pure ALOHA

and 100ms defines the slot time length. The parameter @display

selects a background image, taken from the library.

network Aloha

{

parameters:

int numHosts; // number of hosts

double txRate @unit(bps); // transmission rate

double slotTime @unit(ms);// zero means no slots (pure Aloha)

https://assignbuster.com/simulation-of-the-aloha-protocol/

Simulation of the aloha protocol – Paper Example Page 12

@display(“ bgi= background/terrain”);

submodules:

server: Server;

host[numHosts]: Host {

txRate = txRate;

slotTime = slotTime;

}

}

The following Server. ned file describes the server’s simple

module. It loads an image for the server icon and defines a gate

of input type (in), with which it is not necessary to establish a

connection. It can receive a message directly from a host via

@directIn, something that is usual to wireless simulations.

simple Server

{

parameters:

@display(“ i= device/antennatower_l”);

gates:

input in @directIn;

}

https://assignbuster.com/simulation-of-the-aloha-protocol/

Simulation of the aloha protocol – Paper Example Page 13

The following Host. ned describes the host’s simple module. It

loads a set of parameters from the omnetpp. ini file, the

radioDelay, which is the propagation delay over the radio link,

pkLenBits, which is the length of the frame, and iaTime, which is

the random inter-arrival time, following exponential distribution.

The rest of the parameters, txRate and slotTime, are loaded in

Aloha. ned, during sub-module instantiation.

simple Host

{

parameters:

double txRate @unit(bps); // transmission rate

double radioDelay @unit(s);// propagation delay of radio link

volatile int pkLenBits @unit(b); // packet length in bits

volatile double iaTime @unit(s); // packet interarrival time

double slotTime @unit(s); // zero means no slots (pure Aloha)

@display(“ i= device/pc_s”);

}

 Configuration

 The most critical file is the configuration file omnetpp. ini. It

stores the values of the parameters that are loaded in the NED

parameter fields. When declaring on the [General] field that

Aloha. slotTime= 0, is presets globally the pure ALOHA protocol.

Similarly, the Aloha. numHosts= 20 defines the number of hosts
https://assignbuster.com/simulation-of-the-aloha-protocol/

Simulation of the aloha protocol – Paper Example Page 14

to be 20, the Aloha. txRate= 9. 6kbps defines the R to be

9600bps. The last definitions load the parameters of Aloha model

and consequently the parameters of the simple modules that

Aloha model controls, which are the server and the host modules.

The definitions Aloha. host[*]. pkLenBits= 952b and Aloha.

host[*]. radioDelay= 10ms load directly the parameters pk.

LenBits and radioDelay on every host submodule, respectively.

[General]

network = Aloha

#debug-on-errors = true

#record-eventlog = true

Aloha. numHosts = 20

Aloha. slotTime = 0 # no slots

Aloha. txRate = 9. 6Kbps

Aloha. host[*]. pkLenBits = 952b #= 119 bytes, so that (with +1

byte guard) slotTime is a nice round number

Aloha. host[*]. radioDelay = 10ms

[Config PureAloha1]

description = “ pure Aloha, overloaded”

too frequent transmissions result in high collision rate and low

channel utilization

Aloha. host[*]. iaTime = exponential(2s)

https://assignbuster.com/simulation-of-the-aloha-protocol/

Simulation of the aloha protocol – Paper Example Page 15

[Config PureAloha2]

description = “ pure Aloha, optimal load”

near optimal load, channel utilization is near theoretical

maximum 1/2e

Aloha. host[*]. iaTime = exponential(6s)

[Config PureAloha3]

description = “ pure Aloha, low traffic”

very low traffic results in channel being idle most of the time

Aloha. host[*]. iaTime = exponential(30s)

[Config PureAlohaExperiment]

description = “ Experimental mutliparameter demostration”

repeat = 2

sim-time-limit = 90min

**. vector-recording = false

Aloha. numHosts = ${numHosts= 10, 15, 20}

Aloha. host[*]. iaTime = exponential(${mean= 1, 2, 3, 4, 5.. 9

step 2}s)

[Config SlottedAloha1]

description = “ slotted Aloha, overloaded”

slotTime = pkLen/txRate = 960/9600 = 0. 1s

Aloha. slotTime = 100ms
https://assignbuster.com/simulation-of-the-aloha-protocol/

Simulation of the aloha protocol – Paper Example Page 16

too frequent transmissions result in high collision rate and low

channel utilization

Aloha. host[*]. iaTime = exponential(0. 5s)

[Config SlottedAloha2]

description = “ slotted Aloha, optimal load”

slotTime = pkLen/txRate = 960/9600 = 0. 1s

Aloha. slotTime = 100ms

near optimal load, channel utilization is near theoretical

maximum 1/e

Aloha. host[*]. iaTime = exponential(2s)

[Config SlottedAloha3]

description = “ slotted Aloha, low traffic”

slotTime = pkLen/txRate = 960/9600 = 0. 1s

Aloha. slotTime = 100ms

very low traffic results in channel being idle most of the time

Aloha. host[*]. iaTime = exponential(20s)

A selection of the SlottedAloha2 configuration overrides the value

of slotTime with Aloha. host[*]. slotTime= 100ms, which fixes the

slotted ALOHA protocol with slot time to 100ms. The Aloha.

host[*]. iaTime= exponential(2s) sets the frame inter-arrival time

on every host to follow exponential distribution, with mean time

equals to 2 seconds.

https://assignbuster.com/simulation-of-the-aloha-protocol/

Simulation of the aloha protocol – Paper Example Page 17

The Config option PureAlohaExperiment exploits the OMNeT’s

capabilities of organizing different experiments with simple

repetition declarations. The statement Aloha. numHosts=$

{numHosts= 10, 15, 20} declares three (3) repetitions having

10, 1 and 20 hosts respectively.

The statement Aloha. host[*]. iaTime= exponential(${mean= 1,

2, 3, 4, 5.. 9 step 2}s) declares seven (7) repetitions, with

interarrival times equal to exponential distribution and means, 1,

2 , 3, 4, 5, 7 and 9, respectively. The repeat= 2 statement

doubles the number of runs, so finally the available choices will

be 2x3x7= 42 from 0 to 41 optional runs. The statement sim-

time-limit= 90min constrains the simulation time to 90 minutes.

 C++ model coding

 The simple modules Host and Server are based on C++

programming. The relevant host. cc, host. h, server. cc and

server. h, which are included entirely in the appendix section,

implement the model behavior during simulation by exchanging

messages directly one-another or with the simulation kernel. The

following Fig. 11 is a design- level class diagram, describing the

basic relationships among network module Aloha and simple

modules, Host and Server. The two last, inherit from

cSimpleModule simulation class library, and redefine the basic

methods initialize(), handleMessage(), activity() and finish(),

according to the desired function.

https://assignbuster.com/simulation-of-the-aloha-protocol/

Simulation of the aloha protocol – Paper Example Page 18

The Aloha network model comprises of several Host objects and

one Server, so it keeps an aggregation association with Host and

Server classes. It passes also to them some parameter values,

some declared in the omnetpp. ini file and some taken from user

dialog form. The Host module keeps an one-way association with

Server because every Host declares a Server object in the

attribute field, in order to send a direct message (pk) later, by

calling the sendDirect() function. The scheduleAt() function

programs the kernel to send the Host an “ endTxEvent” message

when the transmission ends. This is represented by the self-

association. Similarly, the Server module programs the kernel to

send the Server an “ endRxEvent”, when the reception of the

message sent from Host finishes, and is represented as the self-

association.

The module code is cited commented in the appendix. Here, I will

explain the finish() function of the server module, because it

creates the result reports, necessary for the exploitation of the

simulation.

void Server:: finish()

{

EV << " duration: " << simTime() << endl;

EV << " total frames: " << totalFrames << endl;

EV << " collided frames: " << collidedFrames << endl;

EV << " total receive time: " << totalReceiveTime << endl;

https://assignbuster.com/simulation-of-the-aloha-protocol/

Simulation of the aloha protocol – Paper Example Page 19

EV << " total collision time: " << totalCollisionTime << endl;

EV << " channel utilization: " << currentChannelUtilization <<

endl;

recordScalar(“ duration”, simTime());

recordScalar(“ total frames”, totalFrames);

recordScalar(“ collided frames”, collidedFrames);

recordScalar(“ total receive time”, totalReceiveTime);

recordScalar(“ total collision time”, totalCollisionTime);

recordScalar(“ channel utilization”, currentChannelUtilization);

recordStatistic(&collisionMultiplicityHistogram, “ packets”);

recordStatistic(&collisionLengthHistogram, “ s”);

}

The finish() function is called before the termination of the

simulation. The first six commands enable the printout of the

class variables on the Tkenv window. It prints the final simulation

time, the total transmitted frames, the collided frames on the

server, the total reception time of un-collided frames, the total

time spent on collisions, and the last value of channel utilization,

which comes from the following formula:

Final Channel Utilization= Final Total Receive TimeFinal

Simulation Time

https://assignbuster.com/simulation-of-the-aloha-protocol/

Simulation of the aloha protocol – Paper Example Page 20

It is expected that the Final Channel Utilization, after an

adequate simulation time, that will reach the maximum

theoretical values if the incoming traffic is adjusted at an optimal

value. The recordScalar() function records these values to the

relevant scalar file config_name. sca. Another note is that during

initialize() function there is code to create vector logging, which

is the following functions:

 collisionMultiplicityVector. setName(“ collision

multiplicity”);

 collisionMultiplicityVector. setType(cOutVector:: TYPE_INT);

 collisionMultiplicityVector.

setInterpolationMode(cOutVector:: NONE);

 collisionLengthVector. setName(“ collision length”);

 collisionLengthVector. setUnit(“ s”);

 collisionLengthVector. setInterpolationMode(cOutVector::

NONE);

 channelUtilizationVector. setName(“ channel utilization”);

 channelUtilizationVector. setType(cOutVector::

TYPE_DOUBLE);

 channelUtilizationVector.

setInterpolationMode(cOutVector:: LINEAR);

It creates three vectors, the current number of collisions, the

current time wasted by the collision and the current channel

utilization, with the simulation timestamp. The following function

creates two histogram functions, the number of collisions and the

https://assignbuster.com/simulation-of-the-aloha-protocol/

Simulation of the aloha protocol – Paper Example Page 21

time wasted by collisions. The histogram is auto-ranging, having

declared only the lower limit to be 0. 0 by the

setRangeAutoUpper() function:

 collisionMultiplicityHistogram. setName(“ collision

multiplicity”);

 collisionMultiplicityHistogram. setRangeAutoUpper(0. 0);

 collisionLengthHistogram. setName(“ collision length”);

 collisionLengthHistogram. setRangeAutoUpper(0. 0);

 The data-logging code lies in the handleMessage() function,

where:

 collisionMultiplicityVector.

record(currentCollisionNumFrames);

 collisionMultiplicityHistogram.

collect(currentCollisionNumFrames);

 collisionLengthVector. record(dt);

 collisionLengthHistogram. collect(dt);

 channelUtilizationVector. record(currentChannelUtilization);

The record() function appends a time-stamped value on the

relevant vector and the collect() function adds another value on

the histogram graph. The recordStatistic() function finalizes the

two histogram graphs before termination.

recordStatistic(&collisionMultiplicityHistogram, “ packets”);

recordStatistic(&collisionLengthHistogram, “ s”);

4. Simulation Results

https://assignbuster.com/simulation-of-the-aloha-protocol/

Simulation of the aloha protocol – Paper Example Page 22

 Sequence Charts

 To enable the event logging feature, the command record-

eventlog= true should be placed on the omnetpp. ini file. Then,

on the end of the simulation, a config_name. elog file is created.

To have a clear demonstration of the ALOHA protocol, I choose

two options: A slotted ALOHA simulation, with exponential

interarrival times having 2 sec mean and pure ALOHA simulation,

with exponential interarrival times having 6 sec mean. A typical

slotted ALOHA sequence is the following:

On the #2096 event, the host[4] receives a self scheduled

message “ endTxEvent” from the kernel, on the beginning of a

new slot.

It generates the packet “ pk-7-#26”, begin to transmit it to the

server with the sendDirect() command and set the host’s state=

TRANSMIT.

It schedules the end of transmission message “ endTxEvent” with

a scheduleAt() command, after time:

ttrans= LR= 100 msec, where L is the frame length (960b) and R

is the channel capacity (9600bps).

On the #2097 event, after the simulated propagation time

tprop= 10 msec (on the radio channel), the server receives the

packet “ pk-7-#26” from host[4], set the channelBusy= true and

schedules the end of reception with a scheduleAt() command,

after 100 simulated msec.

https://assignbuster.com/simulation-of-the-aloha-protocol/

Simulation of the aloha protocol – Paper Example Page 23

On the #2098 event, the host[4] receives the self scheduled “

endTxEvent” message from the kernel, set the host’s state= IDLE

and schedule the next frame transmission after random time.

On the #2101 event, the server receives the self-scheduled

message “ endRxEvent”, set the channelBusy= false and

calculate the rest of the class variables.

The events #2100 and #2099 happen almost concurrently,

therefore they collide on the server, starting with event #2102,

then #2103 and ending the collision with event #2106. The

packets transmitted are supposed to be discarded by the server.

The overlapping blue parallelograms indicate the collision zone.

The Fig. 12 depicts the above sequence:

The pure ALOHA protocol is free of slot restrictions and the host

is able to transmit whenever a packet is available. Similarly as

the previous procedure on the event #52, host[0] begins

transmitting and on the event #53 the server starts receiving.

However, on event #54 the host[6] starts transmitting and the

server detects a collision on the event #55. The collision ends on

the event #58 and both packets are discarded. It is obvious the

server waste longer time interval on the former collision, due to

the non-synchronized condition of the hosts. Pure ALOHA looks

less efficient than slotted ALOHA. Afterwards, host[6] retransmits

on event #59 and the server responds on event #60. The

broadcast remain un-collided and ends normally on event #62.

 The pure ALOHA protocol
https://assignbuster.com/simulation-of-the-aloha-protocol/

Simulation of the aloha protocol – Paper Example Page 24

 This section is dealing with the evaluation of the simulation

model, its behavior comparing the theoretical predictions and

some conclusions that results from the extracted graphs. The

most crucial parameter to ALOHA simulation is the traffic seed.

The incoming traffic is considered a Poisson process. The

specifications of a Poisson process declare Poisson distribution

for the number of incoming packets and exponential distribution

for the times between the packets (interarrival times). It is

assumed that the station’s source generates one packet (frame)

per message of constant length (960b). So the model needs to

simulate only the interarrival times, using the function

exponential(mean). The mean is a double precision number

representing the mean of the distribution, in seconds. The

function returns a double precision float, representing the

random time, in seconds.

For the pure ALOHA model: The user selects initially, via a dialog

field, a low traffic profile (mean= 30 sec), then a heavy traffic

profile (mean= 2 sec) and finally the optimal traffic profile

(mean= 6 sec). It is expected that the optimal traffic profile

induces a channel utilization ratio near the theoretical maximum

of 0. 184. After the execution of the pure ALOHA simulation,

using the tree traffic profiles, the relevant vector and scalar files

(PureAloha*-0. vec and PureAloha*-0. sca) appear in the

aloha/results directory. The post processing of these files

produces the PureAloha. anf analysis file, which is included. The

https://assignbuster.com/simulation-of-the-aloha-protocol/

Simulation of the aloha protocol – Paper Example Page 25

simulation time is 90 min for all models and the number of host

is 20.

The first group of histograms in Fig. 13 depicts the PDF of the

collision multiplicity, for the three traffic distributions. It is

obvious that the heavy traffic profile induces much more

collisions and therefore the probabilities to have more than two

or three simultaneous collisions are higher. The number of

multiplicity extends up to 20 comparing to 9 in optimal traffic

and 3 in low traffic. The scalar files give some accessional data

on every distribution, like minimum, maximum and mean values,

standard deviation, etc.

The second group of histograms in Fig. 13, d

https://assignbuster.com/simulation-of-the-aloha-protocol/

	Simulation of the aloha protocol
	Introduction
	OMNeT++ DESCRIPTION
	Aloha Simulation

