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1. Introduction 
The field of fractional calculus and its applications to the class of partial 

differential equations, as well as ordinary equations, gained a rapid 

development. Interesting fractional results turn, in general, on the existence 

and non-existence of solutions. Such kinds of fractional equations come from

different disciplines in sciences, covering medical and engineering matters. 

Techniques used in this kind of work recourse mainly to the use of Green's 

function and its corresponding maximum values, which is not always an easy

approach. The fractional differential equations with the p-Laplacian operator 

involves this mathematical tool. However, to overcome this kind of difficulty, 

another approach can be taken, namely the use of the Cauchy-Schwarz 

inequality and related inequalities as holders. Different aspects have been 

considered by many different researchers in this respect. They have treated 

the existence of either a single or multiple solutions for linearity, but there 

have been few cases for non-linearity. In addition to this, the manner to 

extend these results to a general case with more a general operator seems 

non-evident and requires a thorough analysis of the maximum value of 

Green's functions. This paper is devoted to tackling this problem with the p -

Laplace operator using the Green's function method for the non-linearity 

case. 

Some results focusing on the existence of positive solutions of boundary 

value problems for a class of fractional differential equations with the p-

Laplacian operator have been raised in previous papers (see [ 1 – 22 ] and 

the references therein). Ren and Chen [ 15 ] and Su et al. [ 17 ] established 
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the existence of positive solutions to four-point boundary value problems for 

non-linear fractional differential equations with the p-Laplacian operator. 

However, for papers on this line concerning the q-difference type of 

fractional problems, we refer the reader to references [ 1 – 4 , 8 – 12 , 15 , 18

, 19 , 19 – 33 ]. 

It is worthy of notice that the q -fractional calculus was introduced by Jackson

[ 30 , 31 ], as the reader may observe in consulting the article of Ernst [ 28 ],

where he attributed the work to Jackson. 

Accordingly, we mention the recent developments related to this subject 

(see [ 5 , 12 , 13 , 32 , 34 – 46 ]) and the references therein. 

For multiple solutions for the non-linear case, we refer to the work done by 

El-Shahed and Al-Askar [ 47 ], whereas Graef et al. [ 48 ] deal with positive 

solutions by applying different methods. 

The first result came from Liapunov [ 6 ], in the second ordinary differential 

equation. It was shown that if u is a non-trivial solution of 

{ u ″ ( t ) + q ( t ) u ( t ) = 0 , a < t < b u ( a ) = u ( b ) = 0 , 

where a < b , a and b are two real constants, and the function q ∈ C ([ a, b ];

ℝ), then the function q must satisfy the following integral inequality: 

∫ a b | q ( t ) | d t > 4 b - a . ( 1 ) 

After this result, several extensions are derived from this one, and 

consequently, analogous inequalities are obtained for a class of fractional 
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differential equations subject to different kind of boundary conditions (see [ 5

, 12 – 14 , 29 , 32 , 34 – 36 , 39 – 41 , 44 , 45 , 49 , 50 ]). However, 

concerning the fractional q -difference boundary value problem, it was shown

in Jleli and Samet [ 42 ] that a non-trivial solution of 

{ a D q α u ( t ) + Q ( t ) ( t ) u ( t ) = 0 , t ∈ ( a , b ) , q ∈ [ 0 , 1 ) , 1 < α ≤ 

2 , u ( a ) = 0 , u ( b ) = 0 , ( 2 ) 

where a D q α denotes the fractional q -derivative of Riemann-Liouville type [

43 , 51 ], and Q :[ a, b ] → ℝ is a continuous function, exists if the following 

integral inequality 

∫ a b ( s - a ) α - 1 ( b - ( q s + ( 1 - q ) a ) a ( α - 1 ) | Q ( s ) | a d q s ≥ Γ ( α ) (

b - a ) α - 1 ( 3 ) 

is satisfied. 

In the opinion of the authors, there are no articles dealing with these types of

inequalities for the study of non-trivial solutions for the p -Laplacian operator

involving the q -fractional case. We therefore fill the gap in the literature with

this paper. 

Our result generalizes that one investigated in Jleli and Samet [ 42 ]. 

In this work, we aim to investigate the following q -fractional boundary value 

problem with the p Laplace operator 
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{ a D q β ( ϕ p ( a D q α u ( t ) ) + Q ( t ) ϕ p ( u ( t ) ) = 0 , t ∈ ( a , b ) , u ( a )

= 0 , u ( b ) = A u ( ξ ) , a D q α ( a ) = 0 , a D q α u ( b ) = B a D q α u ( δ ) , (

4 ) 

where a D q α , a D q β are the fractional q -derivative of the Riemann-

Liouville type with 1 < α, β < 2, 0 ≤ A, B ≤ 1, 0 < ξ, δ < 1, ϕ p ( s ) = | s | p - 

2 s , p > 1, ϕ p - 1 = ϕ r , 1 p + 1 r = 1 , and Q :[ a, b ] → ℝ is a continuous 

function on [ a, b ]. 

We prove that the necessary condition of the existence of non-trivial 

solutions of (4) is the following: 

1 ≤ ( ∫ a b G q ~ ( s ) a d q s ) ( ∫ a b H q ~ ( s ) a d q s ) , ( 5 ) 

where G q ~ ( s ) and H q ~ ( s ) are defined respectively by 

G q ~ ( s ) : = 1 Γ q ( α ) q ( s - a ) ( α - 1 ) ( b - a ) α - 1 ( b - ( q s + ( 1 - q ) 

a ) a ( α - 1 ) + A g ( ξ , ( q s + ( 1 - q ) a ) ( b - a ) α - 1 γ , ( 6 ) H q ~ ( s ) : = 

1 Γ q ( β ) q ( s - a ) ( β - 1 ) ( b - a ) β - 1 ( b - ( q s + ( 1 - q ) a ) a ( β - 1 ) + A

h ( ξ , ( q s + ( 1 - q ) a ) ( b - a ) β - 1 γ ̄ , ( 7 ) 

where 

γ : = ( b - a ) α - 1 - A ( ξ - a ) α - 1 , 

and 

γ ̄ : = ( b - a ) β - 1 - b ( δ - a ) β - 1 . 
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Besides, we show that from this inequality derive several existing previous 

results in the literature as well as the standard Lyapunov inequality (1): 

those of Hartman and Wintner [ 52 ], Ferreira [ 39 ], and so on. 

2. Definitions and Lemmas 
In this section, we adopt the main tools that will be needed in the 

subsequent sections; these belong to q fractional calculus. Notations, 

definitions and lemmas are recalled in order to cover the goal of this paper, 

whereas, for consistency, we conserve the same notations for q fractional 

material as adopted in Jleli and Samet [ 42 ]. 

Let q ∈ (0, 1), N 0 = {0, 1, 2, …}, and define 

[ a ] q = q a - 1 q - 1 , a ∈ ℝ . 

The similar q formula to the power ( a − b ) n with n ∈ N 0 is 

( a - b ) 0 = 1 , ( a - b ) n = ∏ k = 0 n - 1 ( a - b q k ) , n ∈ N , a , b ∈ ℝ . 

More generally, if α ∈ ℝ, then 

( a - b ) α = a α ∏ n = 0 ∞ a - b q n a - b q α + n . 

For the particular case when b = 0, we note a (α) = a α . Also, the similar q 

formula to the power function 

( x − y ) n , with n ∈ N 0 is 

( x - y ) a ( 0 ) = 1 , ( x - y ) a ( k ) = ∏ i = 0 k - 1 ( ( x - a ) - ( y - a ) q i ) , k ∈ 

N , ( x , y ) ∈ ℝ 2 . 
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For the general case, when γ ∈ ℝ, then 

( x - y ) a ( γ ) = ( x - a ) γ ∏ i = 0 k - 1 ( ( x - a ) - ( y - a ) q i ( x - a ) - ( y - a ) 

q γ + i ) , = ( x - a ) γ ∏ i = 0 k - 1 ( 1 - q i ( y - a ) ( x - a ) 1 - q γ + i ( y - a ) 

( x - a ) ) = ( x - a ) γ ( 1 - q ( y - a ) ( x - a ) ) . ( 8 ) 

It has the following properties 

• ( t - s ) q ( β + γ ) = ( t - s ) q ( β ) ( t - q s ) q ( γ ) 

• ( a t - a s ) q ( β ) = a β ( t - s ) q ( β ) . 

When derivatives are involved, it holds: 

• ( t − a ) α ≥ ( t − b ) α , for a ≤ b ≤ t , and α > 0. 

We define the q -Gamma function by 

Γ q ( x ) = ( 1 - q ) 0 ( x - 1 ) ( 1 - q ) x - 1 , x ∈ R { 0 , - 1 , - 2 , - 3 , … } . 

In particular one has 

Γ q ( x + 1 ) = [ x ] q Γ q ( x ) , ∀ x > 0 , Γ q ( 1 ) = 1 . 

Here and further, we recall some properties of the q -fractional derivative of 

a function f defined on [ a, b ], a < b , to ℝ. 

The q -fractional derivative of a function f : [ a, b ] → ℝ, is defined by 

( a D q f ) ( t ) = f ( t ) - f ( q t + ( 1 - q ) a ) ( 1 - q ) ( t - a ) , t ≠ a , 

and 
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( a D q f ) ( a ) = lim t → a ( a D q f ) ( t ) . 

Remark: 

By using the following changes: 

q : = x - a y - a , 

it is easy to conclude that if ( a D q f )( t ) ≤ 0 (respectively, ( a D q f )( t ) ≥ 0) 

then f is decreasing (respectively, f is increasing). 

Remark: 

If f is differentiable in ( a, b ) then 

lim q → 1 - ( a D q f ) ( t ) = f ′ ( t ) . 

The q -fractional derivative of a function f : [ a, b ] → ℝ of higher order is 

defined by 

( a D q 0 f ) ( t ) = f ( t ) , and ( a D q n f ) ( t ) = ( a D q ( ( a D q n - 1 f ) ( t ) )

, n ∈ N . 

The q -derivative of a product and a quotient of functions f and g defined on [

a, b ] follows as 

( a D q f g ) ( t ) = f ( t ) ( a D q g ) ( t ) + g ( q t + ( 1 - q ) a ) ( a D q f ) ( t ) , 

and 

( a D q f g ) ( t ) = ( a D q f ) ( t ) g ( t ) - ( a D q g ) ( t ) f ( t ) g ( t ) g ( q t + 

( 1 - q ) a ) . 
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Lemma 2. 1. [ 44 ] For t, s ∈ [ a, b ], the following formulas hold : 

t ( a D q ( t - s ) a ( γ ) ) = [ γ ] q ( t - s ) a ( γ - 1 ) , 

and 

s ( a D q ( t - s ) a γ ) = - [ γ ] q ( t - ( q s + ( 1 - q ) a ) ) a γ - 1 , 

where i ( a D q ) denotes the q-derivative with respect to the variable i . 

Remark: 

If γ > 0, a ≤ b ≤ t , then 

( t - a ) 0 ( γ ) ≥ ( t - b ) 0 ( γ ) . 

Next, we recall the q -integral of a function f defined on [ a, b ], a < b , to ℝ 

and its properties. 

The q -integral of a function f : [ a, b ] → R is defined by 

( a I q 0 f ) ( t ) = ∫ a t f ( s ) a d q s = ( 1 - q ) ( t - a ) Σ i = 0 ∞ q i f ( q i t + 

( 1 - q ) a ) , t ∈ [ a , b ] . 

One may see that the above series is convergent if f is continuous. 

If a < c < b , then the following integral equality is satisfied 

∫ c t f ( s ) a d q s + ∫ a t f ( s ) a d q s = ∫ a c f ( s ) a d q s , t ∈ [ a , b ] . 

The following two relations are also satisfied 
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( a I q 0 f ) ( t ) = f ( t ) , and ( a I q n f ) ( t ) = a I q ( a I q n - 1 f ) ( t ) , n ∈ 

N . 

An essential and important theorem that is known for the classical ordinary 

case is also valid for the fractional one; it is the fundamental theorem of 

calculus. Once applied to the fractional operator, we get 

( a D q a I q f ) ( t ) = f ( t ) - f ( a ) 

if the continuity of the function f is provided. When the continuity of f is 

avoided, we obtain 

( a D q a I q f ) ( t ) = f ( t ) . 

Another crucial integration that is very useful in dealing with non-existence 

of solutions for a class of fractional boundary value problems is the 

integration by parts. It follows as 

∫ a b f ( s ) ( a D q g ) ( s ) a d q s = [ f ( t ) g ( t ) ] t = a t = b - ∫ a b g ( q s +

( 1 - q ) a ) ( a D q f ) ( s ) a d q s . 

The rule of q-integration by parts is also expressed by (see [ 24 ]) 

∫ 0 a g ( t ) D q f ( t ) d q t = f g ( a ) - lim n → + ∞ f g ( a q n ) - ∫ 0 a D q g ( t

) f ( q t ) d q t . ( 9 ) 

If and g are q-regular at zero, then the limit on the right-hand-side of (9) can 

be replaced by ( f g ) ( 0 ) ∙ (For more details, see [ 24 ]). 
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In what follows, we define the q -fractional Riemann-Liouville integral of a 

function f defined on [ a, b ] as follows 

( a I q 0 f ) ( t ) = f ( t ) . 

Let us assume that f and g are two functions defined on [ a, b ] such that f ≤ 

g , then the following properties are satisfied 

∫ a b f ( s ) a d q s ≤ ∫ a b g ( s ) a d q s , 

and 

∫ a b f ( s ) a d q s ≤ ∫ a b | f | ( s ) a d q s . 

As auxiliary results, we need to use the following two lemmas. The reader 

may consult [ 23 , 30 , 31 ] for more details. 

Lemma 2. 2. [ 30 , 50 ] Let f :[ a, b ] → ℝ be a continuous function. Then 

( i ) a D q α ( a I q α f ) ( t ) = f ( t ) , α > 0 , t ∈ [ a , b ] , ( i i ) a I q α a I q β f 

( t ) = a I q α + β f ( t ) , α , β > 0 , t ∈ [ a , b ] . 

Lemma 2. 3. [ 30 , 50 ] Let α > p − 1 and p be a positive integer. The 

following then holds : 

( a I q α ) a D q p f ( x ) = ( a D q p ) a I q α f ( x ) - Σ k = 0 p - 1 ( t - a ) α - p 

+ k Γ q ( α + k - p + 1 ) a D q k f ( a ) . 

2. 1. Results and Consequences 
The method that we would like to apply here consists of getting an 

equivalent integral representation of the non-trivial solution of the 
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considered fractional boundary value problem. It therefore necessitates an 

appropriate construction of the Green function, which plays a crucial role in 

getting Lyapunov's inequalities. 

In order to reduce the q fractional boundary value problem (4) to an 

equivalent integral equation, an auxiliary result is needed. It is formulated in 

the following Lemma. 

Lemma 2. 4. Let u ∈ AC ([ a, b ]). The unique non-trivial solution of the q 

fractional boundary value problem 

{ a D q α u ( t ) + Q ( t ) z ( t ) = 0 , t ∈ ( a , b ) , u ( a ) = 0 , u ( b ) = A u 

( ϵ ) , 

where 1 < α < 2, a < ϵ < b , and 0 ≤ A ≤ 1, is then given by 

u ( t ) = ∫ a b G ( t , ( q s + ( 1 - q ) a ) z ( s ) Q ( s ) a d q s , ( 10 ) G ( t , s ) =

g ( t , s ) + A g ( ϵ , s ) ( t - a ) α - 1 ( b - a ) α - 1 - A ( ϵ - a ) α - 1 , ( 11 ) 

where 

Γ q ( α ) g ( t , s ) = { ( t - a ) α - 1 ( b - a ) α - 1 ( b - a ) α - 1 ( b - s ) α - 1 - ( t

- s ) α - 1 , a ≤ s ≤ t , ( t - a ) α - 1 ( b - a ) α - 1 ( b - s ) α - 1 , t ≤ s ≤ b . 

( 12 ) 

Proof. We apply Lemma 2. 3 in order to reduce the fractional boundary value 

problem (4) to an equivalent integral one 

u ( t ) = - a I q α u ( t ) + c 1 ( t - a ) α - 1 + c 2 ( t - a ) α - 2 , ( 13 ) 

where c 1 , c 2 are real constants. 
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From u ( a ) = 0 and (4), we get c 2 = 0. Therefore, the general solution of (4)

is given by 

u ( t ) = - a I q α u ( t ) + c 1 ( t - a ) α - 1 = - ∫ a t ( t - ( q s + ( 1 - q ) a ) ) a 

( α - 1 ) Γ q ( α ) Q ( s ) z ( s ) a d q s + c 1 ( t - a ) α - 1 . 

From (14), we deduce that 

u ( b ) = - ∫ a b ( b - ( q s + ( 1 - q ) a ) ) a ( α - 1 ) Γ q ( α ) Q ( s ) z ( s ) a d q 

s + c 1 ( b - a ) α - 1 , ( 14 ) 

and 

u ( ϵ ) = - ∫ a ϵ ( ϵ - ( q s + ( 1 - q ) a ) ) a ( α - 1 ) Γ q ( α ) Q ( s ) z ( s ) a d q 

s , + c 1 ( ϵ - a ) α - 1 . ( 15 ) 

Now, the boundary condition u ( b ) = Au (ϵ) yields 

c 1 = ∫ a b ( b - ( q s + ( 1 - q ) a ) ) a ( α - 1 ) γ Γ q ( α ) Q ( s ) u ( s ) a d q s (

16 ) - ∫ a ϵ A ( ϵ - ( q s + ( 1 - q ) a ) ) a ( α - 1 ) γ Γ q ( α ) Q ( s ) u ( s ) a d q 

s , ( 17 ) 

where 

γ : = ( b - a ) α - 1 - A ( ϵ - a ) α - 1 . 

Thus, the non-trivial solution of (4) is uniquely given by 

u ( t ) = - ∫ a t ( t - ( q s + ( 1 - q ) a ) ) a ( α - 1 ) Γ q ( α ) Q ( s ) z ( s ) a d q s 

+ ∫ a b ( t - a ) α - 1 ( b - ( q s + ( 1 - q ) a ) ) a ( α - 1 ) γ Γ q ( α ) Q ( s ) z ( s )

a d q s - ∫ a ϵ A ( t - a ) α - 1 ( ϵ - ( q s + ( 1 - q ) a ) ) a ( α - 1 ) γ Γ q ( α ) Q 
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( s ) z ( s ) a d q s = - ∫ a t ( t - ( q s + ( 1 - q ) a ) ) a ( α - 1 ) Γ q ( α ) Q ( s ) z 

( s ) a d q s + ∫ a b ( t - a ) α - 1 ( b - ( q s + ( 1 - q ) a ) ) a ( α - 1 ) γ Γ q ( α ) 

Q ( s ) z ( s ) a d q s , + ∫ a b A ( t - a ) α - 1 ( ϵ - ( q s + ( 1 - q ) a ) ) a ( α - 1 )

γ Γ q ( α ) Q ( s ) z ( s ) a d q s - ∫ b ϵ A ( t - a ) α - 1 ( ϵ - ( q s + ( 1 - q ) a ) ) a

( α - 1 ) γ Γ q ( α ) Q ( s ) z ( s ) a d q s = ∫ a b G ( t , s ) Q ( s ) z ( s ) a d q s , 

( 18 ) 

where the Green function G is defined in (11) and (12), and the proof is 

finished. 

Lemma 2. 5. Let u ∈ AC [ a, b ]. The q fractional boundary value problem 

{ a D q β ( ϕ p ( a D q α u ( t ) ) + Q ( t ) z ( t ) = 0 , t ∈ ( a , b ) , u ( a ) = 0 , 

u ( b ) = A u ( ϵ ) , a D q α ( a ) = 0 , a D q α u ( b ) = B a D q α u ( δ ) , , 

( 19 ) 

1 < α, β < 2, a < ϵ < b , and 0 ≤ A, B ≤ 1, 

then admits a non-trivial unique solution defined by 

u ( t ) = ∫ a b G ( t , ( q s + ( 1 - q ) a ) ) ϕ r ( ∫ a b H ( s , ( q τ + ( 1 - q ) a ) ) 

z ( τ ) Q ( τ ) d q τ ) d q s , ( 20 ) 

where G ( t, s ) is defined in (11), (12) and 

H ( t , s ) : = h ( t , s ) + ( B ) p - 1 h ( δ , s ) ( t - a ) α - 1 ( b - a ) β - 1 - ( δ - 

a ) β - 1 , ( 21 ) 

where 
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Γ q ( α ) h ( t , s ) = { ( t - a ) β - 1 ( b - a ) β - 1 ( b - s ) β - 1 - ( t - s ) β - 1 , a 

≤ s ≤ t , ( t - a ) β - 1 ( b - a ) β - 1 ( b - s ) β - 1 , t ≤ s ≤ b . ( 22 ) 

Proof. We use Lemma 2. 4 in order to reduce the fractional differential 

Equation (4) to an equivalent integral one 

ϕ p ( a D q α u ( t ) ) = ( a D q β u ( t ) ) + c 3 ( t - a ) β - 1 + c 4 ( t - a ) β - 2 .

( 23 ) 

In view of the boundary condition a D q u ( a ) = 0 and (23), we obtain c 4 = 0.

Hence the non-trivial solution of the fractional boundary value (4) is given by

ϕ p ( a D q α u ( t ) ) = ( a D q β u ( t ) ) + c 3 ( t - a ) β - 1 = ∫ a t ( t - ( q s + 

( 1 - q ) a ) a ) ( β - 1 ) Γ q ( β ) Q ( s ) z ( s ) a d q s + c 3 ( t - a ) β - 1 . ( 24 ) 

Now in light of (24), we get 

ϕ p ( a D q α u ( b ) ) = ∫ a b ( b - ( q s + ( 1 - q ) a ) ) a ( β - 1 ) Γ q ( β ) Q 

( s ) z ( s ) a d q s + c 3 ( b - a ) β - 1 , ( 25 ) ϕ p ( a D q α u ( δ ) ) = ∫ a δ ( δ -

( q s + ( 1 - q ) a ) ) a ( β - 1 ) Γ q ( β ) Q ( s ) z ( s ) a d q s + c 3 ( δ - a ) β - 

1 . ( 26 ) 

By the boundary condition a D q α u ( b ) = B a D q α u ( δ ) yields 

c 3 = ∫ a b ( b - ( q s + ( 1 - q ) a ) a ) ( β - 1 ) ( ( b - a ) β - 1 - b p - 1 ( δ - a ) 

β - 1 ) Γ q ( β ) Q ( s ) z ( s ) a d q s - ∫ a δ ( δ - ( q s + ( 1 - q ) a ) ) a ( β - 1 ) (

( b - a ) β - 1 - b p - 1 ( δ - a ) β - 1 ) Γ q ( β ) Q ( s ) z ( s ) a d q s . = 1 γ ̄ ( ∫ a 

b ( b - ( q s + ( 1 - q ) a ) ) a ( β - 1 ) Γ q ( β ) Q ( s ) z ( s ) a d q s ) - 1 γ ̄ ( ∫ a 

δ ( δ - ( q s + ( 1 - q ) a ) ) a ( β - 1 ) Γ q ( β ) Q ( s ) z ( s ) a d q s ) , ( 27 ) 
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where 

γ ̄ : = ( ( b - a ) β - 1 - b p - 1 ( δ - a ) β - 1 ) . 

One may observe that, in a similar way to Lemma 2. 4, we get 

ϕ p ( a D q α u ( t ) = - ∫ a b H ( t , ( q s + ( 1 - q ) a ) ) a Q ( s ) z ( s ) a d q s .

( 28 ) 

Thus, the given fractional boundary value problem (4) may be re-written 

equivalently as 

( a D q α u ( t ) + ϕ r ( ∫ a b H ( t , ( q s + ( 1 - q ) a ) ) a Q ( s ) u ( s ) a d q s )

= 0 , t ∈ ( a , b ) , u ( a ) = 0 , u ( b ) = A u ( δ ) . 

Again by Lemma 2. 4, the non-trivial solution of (4) is uniquely given by 

u ( t ) = ∫ a b G ( t , ( q s + ( 1 - q ) a ) ) ϕ r ( ∫ a b H ( s , q τ ) z ( τ ) Q ( τ ) a 

d q τ ) a d q s . ( 29 ) 

The proof of the desired result is achieved. 

Next we shall focus on finding the properties of the Green functions as well 

as their maximum principle. In order to do so, we express this fact in the 

following lemma. 

Lemma 2. 6. Let u ∈ C [ a, b ]. The Green functions G and H defined 

respectively in (11), (12) and (21), (22) are then continuous and satisfy 

( a ) G ( t , ( q s + ( 1 - q ) a ) ) ≥ 0 , a n d H ( t , ( q s + ( 1 - q ) a ) a ) ≥ 0 , ∀ 

( t , s ) ∈ [ a , b ] × [ a , b ] , ( 30 ) ( b ) G ( t , q s + ( 1 - q ) a ) ≤ G ( s , ( q s 
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+ ( 1 - q ) a ) ) , a n d H ( t , q s + ( 1 - q ) a ) ) ≤ H ( ( q s + ( 1 - q ) a ) , ( q s 

+ ( 1 - q ) a ) ) ∀ ( t , s ) ∈ [ a , b ] × [ a , b ] , ( 31 ) 

1 < α, β < 2, a < ϵ < b , and 0 ≤ A, B ≤ 1. 

Proof. Before starting the proof of Lemma 2. 6, let us mention that γ and γ ̄ 

are positive, since a < ϵ, δ < b , and 0 ≤ A, B ≤ 1. 

We consider 

G ( t , s ) = g ( t , s ) + A g ( ϵ , s ) ( t - a ) α - 1 ( b - a ) α - 1 - A ( ϵ - a ) α - 1 .

( 32 ) 

Let us differentiate g ( t, s ) defined in (12) with respect to t , for s ≤ t , by 

Γ q ( α ) g ( t , s ) = { ( t - a ) α - 1 ( b - a ) α - 1 ( b - s ) α - 1 - ( t - s ) α - 1 , a 

≤ s ≤ t , ( t - a ) α - 1 ( b - a ) α - 1 ( b - s ) α - 1 , t ≤ s ≤ b . ( 33 ) t ( a D q g (

t , s ) = t ( a D q ( ( t - a ) α - 1 ) ( b - s ) a ( α - 1 ) ( b - a ) α - 1 - t ( a D q ( ( t 

- s ) a ( α - 1 ) , = [ α - 1 ] q Γ q ( α ) ( ( b - s ) a ( α - 1 ) ( t - a ) α - 2 ) - ( t - s )

a ( α - 2 ) ( ( t - a ) α - 2 ) = [ α - 1 ] q Γ q ( α ) ( t - a ) α - 2 ( ( 1 - s - a b - a ) 0

α - 1 ) - ( t - a ) α - 2 ( ( 1 - s - a t - a ) 0 α - 2 ) ≤ [ α - 1 ] q Γ q ( α ) ( t - a ) α - 

2 ( ( 1 - s - a b - a ) 0 α - 1 ) - ( ( 1 - s - a b - a ) 0 α - 2 ) , ( 34 ) 

which is non-positive, since a < s < t < b . 

Therefore, the function g is decreasing in its argument t , and the following 

inequality is satisfied 

0 = g ( b , q s + ( 1 - q ) a ) ≤ g ( t , q s + ( 1 - q ) a ) ≤ g ( q s + ( 1 - q ) a ) , 

q s + ( 1 - q ) a ) . ( 35 ) 
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To this end, one may conclude that the right-hand-side of (35) may be 

expressed as 

g ( q s + ( 1 - q ) a ) , q s + ( 1 - q ) a ) = 1 Γ q ( α ) ( q ( s - a ) b - a ) α - 1 ( b 

- ( ( q s + ( 1 - q ) a ) a ) a ( α - 1 ) . ( 36 ) 

Thus, G ( t , (( qs + (1 − q ) a )) a ) is non-negative and satisfies 

G ( t , ( ( q s + ( 1 - q ) a ) ) a ) ≤ max a ≤ t ≤ b G ( t , ( q s + ( 1 - q ) a ) ) = 

max a ≤ t ≤ b ( g ( t , ( q s + ( 1 - q ) a ) ) + A g ( ϵ , ( q s + ( 1 - q ) a ) ( t - 

a ) α - 1 γ ) ≤ 1 Γ q ( α ) q ( s - a ) ( α - 1 ) ( b - a ) α - 1 ( b - ( ( q s + ( 1 - q ) a

) ) a ( α - 1 ) + A g ( ϵ , ( q s + ( 1 - q ) a ) a ( b - a ) α - 1 γ : = G q ~ ( s ) . 

( 37 ) 

For t ≤ s , G is defined by 

G ( t , s ) = g ( t , s ) + A g ( ϵ , s ) ( t - a ) α - 1 ( b - a ) α - 1 - A ( ϵ - a ) α - 1 ,

( 38 ) 

where 

Γ q ( α ) g ( t , s ) = ( t - a ) α - 1 ( b - a ) α - 1 ( b - s ) α - 1 . ( 39 ) 

Similarly to above, we make differentiation with respect to t , and then we 

get 

t ( a D q g ( t , s ) ) = [ α - 1 ] q Γ q ( α ) ( ( 1 - s - a b - a ) a α - 1 ( t - a ) α - 

2 ) , ( 40 ) 
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which is non-negative, and consequently the function g is non-decreasing in 

its argument t . We have 

0 = g ( a , q s + ( 1 - q ) a ) ≤ g ( t , q s + ( 1 - q ) a ) ≤ g ( s , q s + ( 1 - q ) 

a ) , ( 41 ) 

where g ( s , q s + ( 1 - q ) a ) = ( q ( s - a ) ) ( α - 1 ) ( b - a ) α - 1 ( b − ( ( q s

+ ( 1 − q ) a ) ) a ( α − 1 ) . 

Now, to prove the inequality involving H , we consider H ( t, s ) defined in 

(21) − (22) by 

H ( t , s ) : = h ( t , s ) + ( B ) p - 1 h ( δ , s ) ( t - a ) β - 1 ( b - a ) β - 1 - ( B ) p 

- 1 ( δ - a ) β - 1 , ( 42 ) Γ q ( α ) h ( t , s ) = { ( t - a ) β - 1 ( b - a ) β - 1 ( b - 

s ) β - 1 - ( t - s ) β - 1 , a ≤ s ≤ t , ( t - a ) β - 1 ( b - a ) β - 1 ( b - s ) β - 1 , t ≤

s ≤ b . ( 43 ) 

For t ≤ s , we have 

Γ q ( α ) h ( t , ( q s + ( 1 - q ) a ) a = ( t - a ) β - 1 ( b - a ) β - 1 ( b - ( q s + ( 1

- q ) a ) ) a ( β - 1 ) ≤ ( s - a ) ( β - 1 ) ( b - a ) β - 1 ( b - ( q s + ( 1 - q ) a ) ) a (

β - 1 ) : = Γ q ( α ) h ( s , ( q s + ( ( 1 - q ) a ) ) . ( 44 ) 

For t ≥ s , we consider 

Γ q ( α ) h ( t , ( q s + ( 1 - q ) a ) a ) = ( t - a ) β - 1 ( b - a ) β - 1 ( b - ( q s + 

( 1 - q ) a ) ) a ( β - 1 ) - ( t - ( q s + ( 1 - q ) a ) ) a ( β - 1 ) . ( 45 ) 

We claim that h ( t , ( qs + (1 − q ) a ) a ) is non-negative too. It is sufficient 

to replace α − 1 by β − 1 in all the steps of the proof of Lemma 2. 6 ( b ), 
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and we get the same result. So the proof is omitted, since it is similar to that 

of Lemma 2. 6. Therefore 

0 = h ( a , ( q s + ( 1 - q ) a ) ) ≤ h ( t , ( q s + ( 1 - q ) a ) ) ≤ h ( s , ( q s + ( 1

- q ) a ) ) . 

Likely, one may conclude that the right-hand-side h ( s , ( qs + (1 − q ) a )) 

appearing in the previous inequality may be expressed as 

h ( s , ( q s + ( 1 - q ) a ) ) = 1 Γ q ( β ) ( q ( s - a ) b - a ) β - 1 ( b - ( q s + ( 1 -

q ) a ) a ( β - 1 ) . ( 46 ) 

Thus, H ( t , ( qs + (1 − q ) a )) is non-negative and satisfies 

H ( t , ( q s + ( 1 - q ) a ) ) ≤ max a ≤ t ≤ b H ( t , ( q s + ( 1 - q ) a ) ) = max 

a ≤ t ≤ b ( h ( t , ( q s + ( 1 - q ) a ) ) + A h ( δ , ( q s + ( 1 - q ) a ) a ( t - a ) β 

- 1 γ ̄ ) ≤ 1 Γ q ( β ) q ( s - a ) ( β - 1 ) ( b - a ) β - 1 ( b - ( ( q s + ( 1 - q ) a ) ) a

( β - 1 ) + A h ( δ , ( q s + ( 1 - q ) a ) a ( b - a ) β - 1 γ ̄ : = H q ~ ( s ) . ( 47 ) 

The main result of this paper, which is a Lyapunov's inequality for a q - 

fractional difference p -Laplacian boundary value problem (4), will be 

formulated in the next theorem. We state and prove it in light of the previous

lemmas. 

Theorem 2. 1. Assume that u is a non-trivial solution of the q fractional 

boundary value problem 
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{ D a q β ( ϕ p ( a D q α ϕ p ( u ( t ) ) ) + Q ( t ) ϕ p ( u ( t ) ) = 0 , t ∈ ( a , 

b ) , u ( a ) = 0 , u ( b ) = A u ( ϵ ) , D a q α ( a ) = 0 , a D q α u ( b ) = B a D q

α u ( δ ) , ( 48 ) 

where a D q α , a D q β are the fractional q-derivative of the Riemann-

Liouville type with 1 < α, β < 2, 0 ≤ A, B ≤ 1, a < ϵ, δ < b , ϕ p ( s ) = | s | p -

2 s , p > 1, ϕ p - 1 = ϕ r , 1 p + 1 r = 1 , and Q :[ a, b ] → R is a continuous 

function on [ a, b ]. 

The following integral inequality is then satisfied 

1 ≤ ( ∫ a b G ~ q ( s ) a d q s ) ( ∫ a b H ~ q ( s ) | Q ( s ) | a d q s ) r - 1 , 

( 49 ) 

where G ~ q ( s ) , and H ~ q ( s ) are defined in (37) and (49), respectively . 

Proof. Let us define the norm of u , where u is a non-trivial solution of the q -

fractional difference boundary value problem (4) by 

| | u | | : = max t ∈ [ a , b ] | u ( t ) | . 

Then, in view of Lemma 2. 5, the non-trivial solution u ∈ AC ([ a, b ], ℝ) may 

be re-written for all t ∈ [ a, b ] as follows 

u ( t ) = ∫ a b G ( t , q s + ( 1 − q ) a ) ϕ q ( ∫ a b H ( s , q σ ) + ( 1 − q ) a ) Q 

( σ ) ϕ p ( u ( σ ) ) a d q σ ) a d q s . ( 50 ) 

We then deduce 

| u ( t ) | ≤ ∫ a b | G ( t , q s + ( 1 − q ) a ) ) | | ϕ q ( ∫ a b H ( s , σ ) Q ( σ ) ϕ p 

( u ( σ ) ) a d q σ ) | a d q s = ∫ a b | G ( t , q s + ( 1 − q ) a ) ) | | ( ∫ a b H ( s ,
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q σ ) + ( 1 − q ) a ) Q ( σ ) ϕ p ( u ( σ ) ) a d q σ ) | r − 1 a d q s = ∫ a b | G 

( t , q s + ( 1 − q ) a ) ) | | ( ∫ a b | H ( s , q σ ) + ( 1 − q ) a ) Q ( σ ) | || u || a 

p − 1 d q σ ) | r − 1 a d q s = ∫ a b | G ( t , s ) | | | u | | p − 1 r − 1 ( ∫ a b | H (

s , q σ ) + ( 1 − q ) a ) | | Q ( σ ) | a d q σ ) r − 1 a d q s . ( 51 ) 

Based on the non-triviality of the solution u and the fact that p and r are 

conjugates, one may observe that 

1 ≤ ∫ a b | G ( t , q s + ( 1 - q ) a ) | a d q s ( ∫ a b | H ( s , q σ ) + ( 1 - q ) a ) | 

| Q ( σ ) | a d q σ ) r - 1 . 

Due to Lemma 2. 5 and Lemma 2. 6, it holds that 

1 ≤ ∫ a b G q ~ ( s ) a d q s ( ∫ a b H q ~ ( s ) | Q ( σ ) | a d q σ ) r - 1 . 

To this end, it is worth noticing that, by letting q to 1 − , we retrieve the 

following integral inequality due to Hartman and Wintner (see [ 52 ]) 

∫ a b ( s - a ) ( b - s ) | Q ( s ) | d s ≥ ( b - a ) . 

Due to this fact, the obtained integral inequality (49) may be viewed as the q

-fractional integral Hartman and Wintner inequality for the p -Laplacian case.

However, it is easy for the reader to get an analogous result to this 

fundamental inequality by considering p = 2, α = 2, and q → 1 − . 

Several types of Lyapunov's inequality were derived from Theorem 2. 1. 

Hereafter, we formulate and express all of them in the following corollaries. 

We shall focus on covering both cases, ordinary differential equations and 

fractional differential equations. In addition, we illustrate this Theorem by 
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giving an example. It consists of getting the interval of non-zeros of an 

appropriate eigenvalue fractional boundary value problem. 

Let us start with the first result derived from Theorem 2. 1. 

Corollary 2. 1. Suppose that u is a non-trivial solution of the q fractional 

boundary value problem 

{ a D q β ( ϕ p ( a D q α u ( t ) ) + Q ( t ) ϕ p ( u ( t ) ) = 0 , t ∈ ( a , b ) , u ( a )

= 0 , u ( b ) = A u ( ϵ ) , a D q α ( a ) = 0 , a D q α u ( b ) = B a D q α u ( δ ) , ,

( 52 ) 

where a D q α , a D q β are the fractional q-derivative of Riemann-Liouville 

type with 1 < α, β < 2, 0 ≤ A, B ≤ 1, a < ϵ, δ < b , ϕ p ( s ) = | s | p - 2 s , p 

> 1, ϕ p - 1 = ϕ r , 1 p + 1 r = 1 , and Q :[ a, b ] → R is a continuous function 

on [ a, b ]. 

The following integral inequality is then satisfied 

1 ≤ 1 Γ q ( α ) A γ ( ϵ - a ) ( α - 1 ) 1 Γ q ( β ) B p - 1 γ ̄ ( δ - a ) β - 1 ( b - a ) ( ∫

a b | Q ( s ) | a d q s ) r - 1 . ( 53 ) 

Proof. It is sufficient to let q → 0 + and consider two cases: t ≤ s and s ≤ t . In

the first case, G q ~ ( t , s ) and H q ~ ( t , s ) defined in (37) and (47) tend to

zero. In the second case, they take the following form 

G q ~ ( t , s ) : = A ( ϵ - a ) α - 1 γ and H q ~ ( t , s ) : : = B p - 1 ( δ - a ) β - 1 

γ ̄ , 

and we get the result of this corollary. 
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Corollary 2. 2. Suppose that u is a non-trivial solution of the q fractional 

boundary value problem 

{ a D q β ( ϕ p ( a D q α u ( t ) ) + Q ( t ) ϕ p ( u ( t ) ) = 0 , t ∈ ( a , b ) , u ( a )

= 0 , u ( b ) = A u ( ϵ ) , a D q α ( a ) = 0 , a D q α u ( b ) = B a D q α u ( δ ) , (

54 ) 

where a D q α , a D q β are the fractional q-derivative of the Riemann-

Liouville type with 1 < α, β < 2, 0 ≤ A, B ≤ 1, a < ϵ, δ < b , ϕ p ( s ) = | s | p -

2 s , p > 1, ϕ p - 1 = ϕ r , 1 p + 1 r = 1 , and Q :[ a, b ] → R is a continuous 

function on [ a, b ]. 

The following integral inequality is then satisfied 

1 ≤ ( ∫ a b 1 Γ q ( α ) ( s - a b - a ) α - 1 ( b - s ) α - 1 a d q s + ∫ a b A γ g ( ϵ , 

s ) ( b - a ) α - 1 a d q s ) ( ∫ a b 1 Γ q ( β ) ( s - a b - a ) β - 1 ( b - s ) β - 1 | Q (

s ) | a d q s + ∫ a b B p - 1 γ ̄ h ( δ , s ) ( b - a ) β - 1 | Q ( s ) | a d q s ) r - 1 . 

Proof. The result is achieved by letting q → 1 − in (49). 

Remarks: 

• The result of this corollary (Corollary 2. 2) represents a Hartman-Wintner 

inequality for the q -fractional difference p -Laplacian boundary value 

problem (54). For the particular case when A = B = 0 and α = β, we obtain 

∫ a b ( s - a ) α - 1 ( b - s ) α - 1 Q ( s ) d s ≥ Γ ( α ) ( 4 b - a ) α - 1 . 

• When α = β = 2, we retrieve the necessary condition of existence of non-

trivial solutions investigated by Lyapunov for the second ordinary differential
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equation subject to the Dirichlet boundary conditions, and therefore one may

conclude that if the non-trivial solution corresponding to this problem exists, 

then the non-trivial solution of (54) exists too, and vice-versa. 

Indeed, in that case, for α = β = 2, we find: 

4 b - a ≤ ∫ a b ( s - a ) ( b - s ) | Q ( s ) | d s . 

Now we focus on a second mixed-order differential inequality by taking α = β

= 2. For the next derived result from Theorem 2. 1, we provide an important 

inequality that is very useful. This is the arithmetic-geometric-harmonic 

inequality. It says that: 

( s - a ) ( b - s ) ≤ ( b - a ) 2 4 . 

Corollary 2. 3. Suppose that u is a non-trivial solution of the q fractional 

boundary value problem 

{ a D q β ( ϕ p ( a D q α u ( t ) ) + Q ( t ) ϕ p ( u ( t ) ) = 0 , t ∈ ( a , b ) , u ( a )

= 0 , u ( b ) = A u ( ϵ ) , a D q α ( a ) = 0 , a D q α u ( b ) = B a D q α u ( δ ) , (

55 ) 

where a D q α , a D q β are the fractional q-derivative of the Riemann-

Liouville type with 1 < α, β < 2, 0 ≤ A, B ≤ 1, a < ϵ, δ < b , ϕ p ( s ) = | s | p -

2 s , p > 1, ϕ p - 1 = ϕ r , 1 p + 1 r = 1 , and Q :[ a, b ] → R is a continuous 

function on [ a, b ]. 

The following integral inequality is then satisfied 
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1 ≤ ( ∫ a b 1 Γ ( α ) ( b - a ) 2 ( α - 1 ) 4 α - 1 d s + ∫ a b A γ g ( ϵ , s ) ( b - a ) 

α - 1 d s ) ( ∫ a b 1 Γ ( β ) ( ( b - a ) 2 ( β - 1 ) 4 β - 1 | Q ( s ) | d s + ∫ a b B p - 

1 γ ̄ h ( δ , s ) ( b - a ) β - 1 | Q ( s ) | d s ) r - 1 . 

Proof. We use the result of Corollary 2. 2 by considering the arithmetic-

geometric-harmonic inequality, and we get the desired result. Now we focus 

on a second mixed-order differential inequality by taking α = β = 2, p = 2 

and therefore r = 2, since p and r are conjugates. 

Corollary 2. 4. Suppose that u is a non-trivial solution of the fractional q-

difference boundary value problem 

{ a D ″ ( a D ″ u ( t ) + Q ( t ) u ( t ) = 0 , t ∈ ( a , b ) , u ( a ) = 0 , u ( b ) = A 

u ( ϵ ) , a D ″ ( a ) = 0 , a D ″ u ( b ) = B a D ″ u ( δ ) , ( 56 ) 

where a D ″ , a D ″ are the fractional derivative of the Riemann-Liouville type 

of order 2, 0 ≤ A, B ≤ 1, a < ϵ, δ < b , and Q :[ a, b ] → R is a continuous 

function on [ a, b ]. 

The following integral inequality is then satisfied 

1 ≤ ( ∫ a b ( s - a b - a ) ( b - s ) d s + ∫ a b A γ g ( ϵ , s ) ( b - a ) d s ) ( ∫ a b 

( s - a b - a ) ( b - s ) | Q ( s ) | d s + ∫ a b B γ ̄ h ( δ , s ) ( b - a ) | Q ( s ) | d 

s ) , 

where g and h are defined in (12) and (22), respectively ( with α = β = 2), 

and γ and γ ̄ are defined by 

γ : = ( b - a ) - A ( ϵ - a ) , a n d γ ̄ : = ( b - a ) - B p - 1 ( δ - a ) . 
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Proof. We set α = β = 2, p = r = 2, and we let q → 1 − in Corollary 2. 2, and 

the desired result is therefore established. 

Remark: 

The result obtained in Corollary 2. 4 is more general than the Hartman 

Wintner inequality. For the particular case when A = B = 0, we get the 

classical Hartman-Wintner inequality. 

Corollary 2. 5. Suppose that u is a non-trivial solution of the fractional 

boundary value problem 

{ a D ″ ( a D ″ u ( t ) + Q ( t ) u ( t ) = 0 , t ∈ ( a , b ) , u ( a ) = 0 , u ( b ) = 0 , 

a D ″ u ( a ) = 0 , a D ″ u ( b ) = 0 , ( 57 ) 

where a D ″ , a D ″ are the fractional derivative of the Riemann-Liouville type 

of order 2, and Q :[ a, b ] → ℝ is a continuous function on [ a, b ]. 

The following integral inequality is then satisfied 

4 b - a ≤ ∫ a b ( s - a ) ( b - s ) | Q ( s ) | d s . ( 58 ) 

Proof. It is sufficient to use the arithmetic-geometric-harmonic inequality to 

the conclusion of Corollary 2. 4 and set A = B = 0, and the result will follow. 

Corollary 2. 6. Suppose that u is a non-trivial solution of the fractional 

boundary value problem 

{ a D ″ ( a D ″ u ( t ) + Q ( t ) u ( t ) = 0 , t ∈ ( a , b ) , u ( a ) = 0 , u ( b ) = 0 , 

a D ″ ( a ) = 0 , a D ″ u ( b ) = 0 , ( 59 ) 
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where a D ″ , a D ″ are the fractional derivative of the Riemann-Liouville type 

of order 2, and Q :[ a, b ] → R is a continuous function on [ a, b ]. 

The following integral inequality is then satisfied 

( 4 b - a ) 2 ≤ ∫ a b | Q ( s ) | d s . ( 60 ) 

Proof. Similarly to the above, we apply two times the arithmetic-geometric-

harmonic inequality to the result of Corollary 2. 4, and the desired result is 

achieved. 

3. On an Interval of Real Zeros of the Mittag-Leffler 
Function 
In this section, we are interested in getting the interval of real zeros of the 

following Mittag-Leffler function [ 43 ]: 

E α ( λ ) = Σ k = 0 ∞ λ k Γ ( k α + β ) , λ , β ∈ ℂ , and R e ( α ) > 0 , 

where C denotes the set of complex numbers, and R (α) is the real part of α. 

The key tool in proving this result consists of an appropriate integral 

inequality of the following fractional boundary value problem. 

Theorem 3. 1. Let u be a non-trivial solution of 

0 D α ( 0 D α ( u ( t ) ) ) + λ u ( t ) = 0 , 0 < t < 1 , 1 < α ≤ 2 , u ( 0 ) = 0 , u 

( 1 ) = 0 , 0 D α u ( 0 ) = 0 , 0 D α u ( 1 ) = 0 , ( 61 ) 

then | λ| ≥ (Γ(α)4 α − 1 ) 2 . 

Proof. We apply Corollary 2. 3 with A = B = 0, α = β, p = 2, r = 2, and a = 0, 

b = 1. We obtain 
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| λ | ≥ ( Γ ( α ) 4 α - 1 ) 2 , 

and the proof is completed. 
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