
Android application 
development 
fundamentals

Technology, Development

https://assignbuster.com/essay-subjects/technology/development/
https://assignbuster.com/essay-subjects/technology/
https://assignbuster.com/android-application-development-fundamentals/
https://assignbuster.com/android-application-development-fundamentals/
https://assignbuster.com/android-application-development-fundamentals/
https://assignbuster.com/


 Android application development fundamen... – Paper Example Page 2

Application Fundamentals Quickview • Android applications are composed of 

one or more application components (activities, services, content providers, 

and broadcast receivers) • Each component performs a different role in the 

overall application behavior, and each one can be activated individually 

(even by other applications) • The manifest file must declare all components 

in the application and should also declare all application requirements, such 

as the minimum version of Android required and any hardware 

configurations required • Non-code application resources (images, strings, 

layout files, etc. should include alternatives for different device 

configurations (such as different strings for different languages and different 

layouts for different screen sizes) In this document 1. Application 

Components 1. Activating components 2. The Manifest File 1. Declaring 

components 2. Declaring application requirements 3. Application Resources 

Android applications are written in the Java programming language. The 

Android SDK tools compile the code—along with any data and resource files

—into an Android package, an archive file with an . apk suffix. All the code in 

a single . pk file is considered to be one application and is the file that 

Android-powered devices use to install the application. Once installed on a 

device, each Android application lives in its own security sandbox: • The 

Android operating system is a multi-user Linux system in which each 

application is a different user. • By default, the system assigns each 

application a unique Linux user ID (the ID is used only by the system and is 

unknown to the application). The system sets permissions for all the files in 

an application so that only the user ID assigned to that application can 

access them. Each process has its own virtual machine (VM), so an 

https://assignbuster.com/android-application-development-fundamentals/



 Android application development fundamen... – Paper Example Page 3

application's code runs in isolation from other applications. • By default, 

every application runs in its own Linux process. Android starts the process 

when any of the application's components need to be executed, then shuts 

down the process when it's no longer needed or when the system must 

recover memory for other applications. In this way, the Android system 

implements the principle of least privilege. That is, each application, by 

default, has access only to the components that it requires to do its work and

no more. 

This creates a very secureenvironmentin which an application cannot access 

parts of the system for which it is not given permission. However, there are 

ways for an application to share data with other applications and for an 

application to access system services: • It's possible to arrange for two 

applications to share the same Linux user ID, in which case they are able to 

access each other's files. To conserve system resources, applications with 

the same user ID can also arrange to run in the same Linux process and 

share the same VM (the applications must also be signed with the same 

certificate). An application can request permission to access device data 

such as the user's contacts, SMS messages, the mountable storage (SD 

card), camera, Bluetooth, and more. All application permissions must be 

granted by the user at install time. That covers the basics regarding how an 

Android application exists within the system. The rest of this document 

introduces you to: • The core framework components that define your 

application. • The manifest file in which you declare components and 

required device features for your application. Resources that are separate 

from the application code and allow your application to gracefully optimize 

https://assignbuster.com/android-application-development-fundamentals/



 Android application development fundamen... – Paper Example Page 4

its behavior for a variety of device configurations. Application Components 

Application components are the essential building blocks of an Android 

application. Each component is a different point through which the system 

can enter your application. Not all components are actual entry points for the

user and some depend on each other, but each one exists as its own entity 

and plays a specific role—each one is a unique building block that helps 

define your application's overall behavior. 

There are four different types of application components. Each type serves a 

distinct purpose and has a distinct lifecycle that defines how the component 

is created and destroyed. Here are the four types of application components:

Activities An activity represents a single screen with a user interface. For 

example, an email application might have one activity that shows a list of 

new emails, another activity to compose an email, and another activity for 

reading emails. Although the activities work together to form a cohesive user

experience in the email application, each one is independent of the others. 

As such, a different application can start any one of these activities (if the 

email application allows it). For example, a camera application can start the 

activity in the email application that composes new mail, in order for the 

user to share a picture. An activity is implemented as a subclass of Activity 

and you can learn more about it in the Activities developer guide. Services A 

service is a component that runs in the background to perform long-running 

operations or to perform work for remote processes. 

A service does not provide a user interface. For example, a service might 

playmusicin the background while the user is in a different application, or it 

https://assignbuster.com/android-application-development-fundamentals/



 Android application development fundamen... – Paper Example Page 5

might fetch data over the network without blocking user interaction with an 

activity. Another component, such as an activity, can start the service and 

let it run or bind to it in order to interact with it. A service is implemented as 

a subclass of Service and you can learn more about it in the Services 

developer guide. Content providers A content provider manages a shared set

of application data. 

You can store the data in the file system, an SQLite database, on the web, or 

any other persistent storage location your application can access. Through 

the content provider, other applications can query or even modify the data 

(if the content provider allows it). For example, the Android system provides 

a content provider that manages the user's contact information. As such, any

application with the proper permissions can query part of the content 

provider (such as ContactsContract. Data) to read and write information 

about a particular person. 

Content providers are also useful for reading and writing data that is private 

to your application and not shared. For example, the Note Pad sample 

application uses a content provider to save notes. A content provider is 

implemented as a subclass of ContentProvider and must implement a 

standard set of APIs that enable other applications to perform transactions. 

For more information, see the Content Providers developer guide. Broadcast 

receivers A broadcast receiver is a component that responds to system-wide 

broadcast announcements. 

Many broadcasts originate from the system—for example, a broadcast 

announcing that the screen has turned off, the battery is low, or a picture 

https://assignbuster.com/android-application-development-fundamentals/



 Android application development fundamen... – Paper Example Page 6

was captured. Applications can also initiate broadcasts—for example, to let 

other applications know that some data has been downloaded to the device 

and is available for them to use. Although broadcast receivers don't display a

user interface, they may create a status bar notification to alert the user 

when a broadcast event occurs. More commonly, though, a broadcast 

receiver is just a " gateway" to other components and is intended to do a 

very minimal amount of work. 

For instance, it might initiate a service to perform some work based on the 

event. A broadcast receiver is implemented as a subclass of 

BroadcastReceiver and each broadcast is delivered as an Intent object. For 

more information, see the BroadcastReceiver class. A unique aspect of the 

Android system design is that any application can start another application’s 

component. For example, if you want the user to capture aphotowith the 

device camera, there's probably another application that does that and your 

application can use it, instead of developing an activity to capture a photo 

yourself. 

You don't need to incorporate or even link to the code from the camera 

application. Instead, you can simply start the activity in the camera 

application that captures a photo. When complete, the photo is even 

returned to your application so you can use it. To the user, it seems as if the 

camera is actually a part of your application. When the system starts a 

component, it starts the process for that application (if it's not already 

running) and instantiates the classes needed for the component. For xample,

if your application starts the activity in the camera application that captures 

https://assignbuster.com/android-application-development-fundamentals/



 Android application development fundamen... – Paper Example Page 7

a photo, that activity runs in the process that belongs to the camera 

application, not in your application's process. Therefore, unlike applications 

on most other systems, Android applications don't have a single entry point 

(there's no main() function, for example). Because the system runs each 

application in a separate process with file permissions that restrict access to 

other applications, your application cannot directly activate a component 

from another application. The Android system, however, can. 

So, to activate a component in another application, you must deliver a 

message to the system that specifies your intent to start a particular 

component. The system then activates the component for you. Activating 

Components Three of the four component types—activities, services, and 

broadcast receivers—are activated by an asynchronous message called an 

intent. Intents bind individual components to each other at runtime (you can 

think of them as the messengers that request an action from other 

components), whether the component belongs to your application or 

another. 

An intent is created with an Intent object, which defines a message to 

activate either a specific component or a specific type of component—an 

intent can be either explicit or implicit, respectively. A unique aspect of the 

Android system design is that any application can start another application’s 

component. For example, if you want the user to capture a photo with the 

device camera, there's probably another application that does that and your 

application can use it, instead of developing an activity to capture a photo 

https://assignbuster.com/android-application-development-fundamentals/



 Android application development fundamen... – Paper Example Page 8

yourself. You don't need to incorporate or even link to the code from the 

camera application. 

Instead, you can simply start the activity in the camera application that 

captures a photo. When complete, the photo is even returned to your 

application so you can use it. To the user, it seems as if the camera is 

actually a part of your application. When the system starts a component, it 

starts the process for that application (if it's not already running) and 

instantiates the classes needed for the component. For example, if your 

application starts the activity in the camera application that captures a 

photo, that activity runs in the process that belongs to the camera pplication,

not in your application's process. Therefore, unlike applications on most 

other systems, Android applications don't have a single entry point (there's 

no main() function, for example). Because the system runs each application 

in a separate process with file permissions that restrict access to other 

applications, your application cannot directly activate a component from 

another application. The Android system, however, can. So, to activate a 

component in another application, you must deliver a message to the system

that specifies your intent to start a particular component. 

The system then activates the component for you. Activating Components 

Three of the four component types—activities, services, and broadcast 

receivers—are activated by an asynchronous message called an intent. 

Intents bind individual components to each other at runtime (you can think 

of them as the messengers that request an action from other components), 

whether the component belongs to your application or another. An intent is 

https://assignbuster.com/android-application-development-fundamentals/



 Android application development fundamen... – Paper Example Page 9

created with an Intent object, which defines a message to activate either a 

specific component or a specific type of component—an intent can be either 

explicit or implicit, respectively. 

https://assignbuster.com/android-application-development-fundamentals/


	Android application development fundamentals

