Vector spaces essay example

Sociology, Identity

ASSIGN BUSTER

A]

In order to define and understand a vector space, it is important to first define and understand a few other related terms. To begin with, a vector is a directed line segment, and its extension to n-dimensions leads to a vector space. The addition operation on two ordered pairs of a set is the ordered pair containing the sum of the respective elements. This is true for ' n ' number of ordered pairs as well (n-dimensional vector space). Similarly, the scalar product operation on an ordered pair of a set is the ordered pair containing the product of the scalar with the respective elements (" Vector Spaces", 2013).

A field F is defined as a set, along with the addition (+) and scalar multiplication (.), such that the following properties are satisfied:

1) Closure Property: For every x, y that belong to F, the values of both ($x+$ $y)$ and ($x . y$) also belong to F.
2) Commutative Property: This condition requires that for every x, y belonging to F,
$x+y=y+x ;$ and
$x . y=y . x$
3) Associative Property: This requires that for every x, y, z that belongs to F, $x+(y+z)=(x+y)+z ;$ and $x \cdot(y \cdot z)=(x \cdot y) \cdot z$
4) Distributive property: This constitutes the following rules which need to be satisfied: For all x, y, and z belonging to F,
$x \cdot(y+z)=(x \cdot y)+(x \cdot z)$
$(x+y) \cdot z=(x . z)+(y . z)$
5) The existence of an additive identity: For every x that belongs to F, there exists a number ' p ' called the additive identity, such that $x+p=p+x=x$ (For a set of Real numbers, the additive identity is 0)
6) The existence of a multiplicative identity: For every x that belongs to F, there exists a number ' p ' called the multiplicative identity, such that $x . p=$ $p . x=x$ (For a set of Real numbers, the multiplicative identity is 1)
7) The existence of both additive and multiplicative inverses: These require the following to be satisfied for every x belonging to F :

Existence of a number ' p ' such that $x+p=p+x=0->$ where p is the additive inverse

Existence of a number ' p ' such that $x . p=p . x=1->$ where p is the multiplicative inverse
8) For every x belongs to F, the values of both $c . x$ must also belong to F, where c is a scalar multiplier.

A vector space is defined as a set ' V' over a field F on which the addition (+) and scalar multiplication (.) properties are defined, and satisfies the following properties:

1) Closure
2) Associativity
3) Commutativity
4) Existence of identity elements
5) Existence of inverse elements
6) Satisfies unitary law according to which $1 . v=$ v (" Vector Spaces", 2013).

In the above conditions, the properties mentioned are as explained in the beginning - in the definition of a field. B]

A vector space R2 has two dimensions, that is, it consists of ordered pairs. Mathematically, $R 2$ is denoted as $\{(a, b) \mid a, b \in R\}$ (" Vector Spaces", 2013). Since all the elements of the set $\in R$, the required properties mentioned above are satisfied. Hence the set R2 is a vector space by definition. For example,

For every $a, b \in R, a+b$ also $\in R$, thus satisfying closure property. For every $a, b \in R, a+b=b+a$, satisfying commutative property.

The number zero satisfies the definition of additive identity.

$-a \in R$ and $1 / a \in R$, and satisfy the definitions of additive and multiplicative inverses respectively, for an element $a \in R$

For every element $a \in R,(a .1)=a$, and $(a+0)=a$

C]
Let $a=(1,1)$, and $b=(3,2)$. For a and b to span R2, there should be a vector $p=(p 1, p 2) \in R 2$ such that there exist $r 1$ and $r 2$ which satisfy the following:
$\mathrm{p}=(\mathrm{r} 1 . \mathrm{a})+(\mathrm{r} 2 . \mathrm{b})=>\mathrm{p} 1=\mathrm{r} 1+3 \mathrm{r} 2 ; \mathrm{p} 2=\mathrm{r} 1+2 \mathrm{r} 2$ (" Spanning Set", 2013)

The coefficient matrix then $=[1312$.$] The determinant of this matrix =-1$ which is non-zero. Hence the matrix is invertible, and R2 is spanned by a and b.

D]

A subspace is defined as a vector space within a vector space with the same
operations. In other words all the elements that belong to a subspace also belong to the vector space which contains the subspace. This is like a subset of a set.

A trivial subspace of $R 2$ is either the 0 vector, or $R 2$ itself, since $0 \in R 2$. They readily fit the definition of a subspace. However, to find a non-trivial subspace S, the following need to be satisfied:

1) $0 \in S$
2) S is closed under vector addition
$3) S$ is closed under scalar products
3) S is closed under linear combinations

Here " closed" refers to satisfying the closure property which was explained in the beginning.

References

Vector Spaces. (2013). Retrieved October 7, 2013, from http://www. math. ku. edu/~mandal/math290/m290NotesChFour. pdf Spanning Set. (2013). Retrieved October 7, 2013, from http://www. math. tamu. edu/~yvorobet/MATH304-2011C/Lect2-03web. pdf

