Free essay on invertible matrix proofs

Sociology, Identity

ASSIGN BUSTER

Abstract

This paper strives to prove different invertible matrices theorems. The following are some of the theorems that the paper will justify - A is an invertible matrix - A is row equivalent to the $\mathrm{n} \times \mathrm{n}$ identity matrix - A has n pivot positions - The equation $A x=0$ has only the trivial solution - The equation $A x=b$ has at least one solution for each b in RN. - The columns of A spans RN - The linear transformation $X \rightarrow A x$ maps $R N$ onto $R N$. - There is an $n \times n$ matrix C such that $A C=I$. - There is an $n \times n$ matrix D such that $A D=I$. - The columns of A form a basis of RN.

Keyword: $\mathbf{a} \leftrightarrow \mathbf{b}$ this means a implies \mathbf{b}.

Invertible Matrix Theorems

- Definition of Logically equivalent: Two statements are said to be logically equivalent if and only if they are true in precisely the same situation. Mathematically A and B are logically equivalent if one can be proved using the other that is in notation $A \Leftrightarrow B$ (Epp, 2011, p. 30).
- Provide an interpretation for the given statement: The $\mathrm{n} \times \mathrm{n}$ matrix A is invertible: $n \times n$ matrix A is said to be invertible if there exist a matrix B with the property that $A B=B A=I$ where I is the identity matrix.

Also the" matrix is of order $\mathrm{n} \times \mathrm{n}$ that is there are n number of rows and n number of columns or it is a square matrix of order n. Invertible implies that
an inverse exists of the matrix or the value of the determinant of the matrix is a non-zero number" states Kyle.

We can explain this by an example

$A=25$
1 3where $\mathrm{n}=2$
$A-1=1 /|A|$
$|A|=(2 * 3)-(5 * 1)=6-5=1$

Hence there exist an inverse A-1 of A

- Justify that the ten statements are logically equivalent to the statement: The $\mathrm{n} \times \mathrm{n}$ matrix A is invertible.
- Two matrices are said to be row equivalent if and only if they have the same row space that is $R(A)=R(B)$. The row space of the $I n$ is the $R n$ and the row of the $A n \times n$ are independent, so we can clearly see that $R(A n \times n)$ $=A n \times n$ thus $a \leftrightarrow b$
- Matrix $A n \times n$ and the identity matrix In is augmented together as (An $\times n$ In) and some row operations are done on the matrix to reduce $\mathrm{An} \times \mathrm{n}$ into identity matrix and since $A n \times n$ is invertible, the final matrix will be (InA-1). since this operation is justified, $A n \times n$ must have n pivot position hence $a \leftrightarrow c$.
- If A-1 exist, we have a $A x=A 0$ implying $x=0$ and these is the only trivial solution hence $a \leftrightarrow d$
- If $A x=b$ has one solution for every b in $R n$, then the matrix A must be invertible by the invertible matrix theorem. That is $A x=A b$ implies $x=A b$. Thus the equation $A x=b$ has at least one solution for each b in $R n$ hence
$a \leftrightarrow e$.
- If A is invertible, then A-transposed is invertible. Therefore, the rows of Atransposed span Rn, so the columns of A span Rn. We can also say that if the columns of A spans $R n$ the same as saying that $A x=b$ has a solution for ever b in $R n$, but if $A x=0$ has only the trivial solution, then there are no free variables, so every column of A has a pivot, so $A x=b$ can never have a pivot in the augmented column. Thus $A x=b$ has a solution no matter what b namely $x=A-1 b$ hence the column of A span $R n$ that is $a \leftrightarrow f$ (Zhang, 2011, p. 97)

Invertible Matrix Theorems

- (e), (f), and (g) are equivalent for any matrix, (For a particular A, all statements must be all true or all false. C: The columns of A span RM Let T: RN--> RM be a linear transformation and let A be the standard matrix for T. A: T maps RN onto RM if and only if the columns of A span RM). Thus, (f) implies (g) because they are linked to (e) which is linked to (a).
- If A is an invertible matrix then there is an $n \times n$ matrix C such that $C A=I$: C is the inverse of A and a matrix multiplied by it's inverse is the identity. $a \leftrightarrow h$
- If an $n \times n$ matrix A is invertible, then the columns of AT are linearly independent, that is matrix A must have both rows and columns that are independent for it to be invertible. If A is an invertible matrix then there exists an $n \times n$ matrix D such that $D A=I$. If D equals the inverse of A, then DA will equal the identity. $a \leftrightarrow i$
- We have already shown that columns of A are independent and they forma span of $R n$. Therefore they form a basis for $R n$. Thus $a \Leftrightarrow j$.

References

Epp, S. S. (2011). Discrete mathematics with applications. Boston, MA: Brooks/Cole.
kyle. (n. d.). Provide an interpretation for the given statement: The $\mathrm{n} \times \mathrm{n}$ matrix a is invertible?. Retrieved from http://answers. yahoo. com/question/index? qid= $20130317064114 A A K f V K X$

Zhang, F. (2011). Matrix theory: Basic results and techniques. New York [etc..: Springer.

