
A flash-memory 
based file system

https://assignbuster.com/a-flash-memory-based-file-system/
https://assignbuster.com/a-flash-memory-based-file-system/
https://assignbuster.com/


A flash-memory based file system – Paper Example Page 2

A Flash-Memory Based File System Atsuo Kawaguchi, Shingo Nishioka, and 

Hiroshi Motoda Advanced Research laboratory, Hitachi, Ltd. Abstract A flash 

memory device driver that supports a conventional UNIX file system 

transparently was designed. To avoid the limitations due to flash memory’s 

restricted number of write cycles and its inability to be overwritten, this 

driver writes data to the flash memory system sequentially as a Log-

structured File System (LFS) does and uses a cleaner to collect valid data 

blocks and reclaim invalid ones by erasing the corresponding flash memory 

regions. 

Measurements showed that the overhead of the cleaner has little effect on 

the performance of the prototype when utilization is low but that the effect 

becomes critical as the utilization gets higher, reducing the random write 

throughput from 222 Kbytes/s at 30% utilization to 40 Kbytes/s at 90% 

utilization. The performance of the prototype in the Andrew Benchmark test 

is roughly equivalent to that of the 4. 4BSD Pageable Memory based File 

System (MFS). Read Cycle Write Cycle Erase Cycle Cycles limit Sector size 

Power Consumption Price 0 – 150 ns 10 µs/byte 1 s/block 100 000 times 64 

Kbytes 30 – 50 mA in an active state 20 – 100 µA in a standby state 10 – 30 

$/MByte Table 1. Flash memory characteristics. make it very attractive for 

mass storage in portable computers. In fact, flash memory in the form of an 

IC-card commonly replaces the HDD or is used for auxiliary storage in 

portable personal computers. Flash memory has two other disadvantages 

limiting its use in computer systems. One is that its content cannot be 

overwritten: it must be erased before new data can be stored. Unfortunately,

this erase operation usually takes about one second. 

https://assignbuster.com/a-flash-memory-based-file-system/



A flash-memory based file system – Paper Example Page 3

The other disadvantage is that the number of erase operations for a memory

cell is limited, and upper limits on the order of 100 000 erasures are not 

unusual. An advantage of flash memory, however, is that its read speed is 

much greater than that of a HDD. The performance of flash memory in read 

operations is, in fact, almost equivalent to that of conventional DRAM. Our 

objective in the work described here was to explore the possibilities of using 

flash memory in file systems and to develop an experimental but practical 

flash memory based file system for UNIX. 

We used a log approach to ensure that new data was always written in a 

known location—so that the erase operation could be performed in advance. 

1. Introduction Flash memory, a nonvolatile memory IC (Integrated Circuit) 

that can hold data without power being supplied, is usually a ROM (Read 

Only Memory) but its content is electrically erasable and rewritable. The 

term “ flash” is used to indicate that it is a whole chip or a block of 

contiguous data bytes (We call this block an erase sector). Many kinds of 

flash memory products [1][2] are available, and their characteristics are 

summarized in Table 1†. 

Because flash memory is five to ten times as expensive per megabyte as 

hard disk drive (HDD) memory, it is not likely to become the main mass 

storage device in computers. Its light weight, low energy consumption, and 

shock resistance, however, † There is another type of flash memory that has 

much smaller erase sectors. (See Section 4. ) 2. Design and Implementation 

We have designed and implemented a flash memory device driver that 

emulates a HDD and supports a standard UNIX file system transparently. We 

chose the device driver approach for its simplicity. (To Appear in USENIX ’95 

https://assignbuster.com/a-flash-memory-based-file-system/



A flash-memory based file system – Paper Example Page 4

Winter) 1 Page Number will be erased in the final version) Since flash 

memory can be accessed directly through a processor’s memory bus, other 

approaches (such as tightly coupling a flash memory system and a buffer 

cache) might perform better by reducing memory-to-memory copy 

operations. Such an approach, however, would require a large number of 

kernel modification because flash memory’s erase and write properties differ

greatly from those of the main memory. bank 0 segment 0 bank 1 ••••••• 

bank l segment m segment 1 ••••••• summary magic no. no. of blocks no. 

of erase op. block 0 information block 1 information 2. 1 Overview 

Our driver must record which regions contain invalid data and reclaim the 

invalid region by erasing those regions. Furthermore, since the number of 

erase operations in each region is limited, the driver must at least monitor 

the number in order to assure reliable operation. In some cases, wear-

leveling should be provided. Our driver maintains a sequential data structure

similar to that of LFS [3][4]. It handles a write request by appending the 

requested data to the tail of the structure. To enable later retrieval of the 

data it maintains a translation table for translating between physical block 

number and flash memory address. 

Because the translation is made on the level of the physical block number, 

our driver can be viewed, from the file-system aspect, as an ordinal block 

device. When write operations take place the flash memory system is 

fragmented into valid and invalid data blocks. To reclaim invalid data blocks, 

we use a cleaner that selects an erase sector, collects valid data blocks in 

the sector, copies their contents to the tail of the log, invalidates the copied 

https://assignbuster.com/a-flash-memory-based-file-system/



A flash-memory based file system – Paper Example Page 5

blocks (and consequently makes the entire sector invalid), and issues an 

erase command to reclaim the sector. 

The functions of this cleaner are identical to those of LFS’s cleaner. Our 

prototype does not implement wear-leveling, although it does maintain a log 

of each erased sector. • • • • block n information physical block no. flag 0 

flag 1 flag 2 flag 3 block information entry segment summary Figure 1. On-

chip data structure. was performing an erase operation triggered by another 

program. This problem can be avoided by temporarily caching in a buffer all 

valid data in the flash memory chip to be erased. This caching operation, 

however, could consume a significant amount of processor resources. 

Recent flash memory products provide an erasesuspend capability that 

enables sectors that are not being erased to be read from during an erase 

operation. Some new products also support write operations during the erase

suspension. Our driver assumes the underlying flash memory system to be 

capable of erase- suspended read operations. Flash memory generally takes 

more time for a write operation than for a read operation. It provides a write 

bandwidth of about 100 Kbytes/s per flash memory chip, whereas a 

conventional SCSI HDD provides a peak write bandwidth 10 to 100 times 

higher. 

Some recent flash memory products incorporate page buffers for write 

operations. These buffers enable a processor to send block data to a flash 

memory chip faster. After sending the data, the processor issues a “ Page 

Buffer Write” command to the chip and the chip performs write operations 

while the processor does other jobs. Our driver assumes that the underlying 

https://assignbuster.com/a-flash-memory-based-file-system/



A flash-memory based file system – Paper Example Page 6

flash memory system consists of some banks of memory that support 

concurrent write operations on each chip. This assumption reduces the need 

for an on-chip page buffer because the concurrent write operations can 

provide a higher transfer rate. 2. Flash Memory Capability Early generations 

of flash memory products prohibit read or write operations while they are 

performing a write or an erase operation. That is, when such a flash memory 

chip is performing an erase operation on an erase sector, data can neither be

read from nor written to other erase sectors until the erase operation 

completes. A naive file system implementation ignoring this prohibition 

would not be feasible in a multitasking environment because it would 

unpredictably block operations whenever the program wanted data from a 

flash memory chip that 2. 3 On Flash Memory Data Structure 

Figure 1 depicts our driver’s data structure built on an underlying flash 

memory system. The flash memory system is logically handled as a 

collection of banks. A bank corresponds to a set of flash memory chips and 

each set can perform erase or write (To Appear in USENIX ’95 Winter) 2 

(Page Number will be erased in the final version) operations independently. 

The banks are in turn divided into segments, each of which corresponds to 

an erase sector of the flash memory system. Each segment consists of a 

segment summary and an array of data blocks. The segment summary 

contains segment information and an array of block information entries. 

Segment information includes the number of blocks the segment contains 

and the number of times the segment has been erased. Bank list Active bank

Cleaning bank list • • • Cleaning candidates • Flag • update • queue • 2. 4 

Flag Update Each block information entry contains flags and the physical 

https://assignbuster.com/a-flash-memory-based-file-system/



A flash-memory based file system – Paper Example Page 7

block number to which this data block corresponds. The physical block 

number is provided to the driver by the file-system module when issuing a 

write data request. The flags are written sequentially so that the driver can 

record the change of the block status without erasing the segment. 

The driver uses four flags to minimize the possibility of inconsistency and to 

make recovery easier. When a logical block is overwritten the driver 

invalidates the old block, allocates a new block, and writes new data to the 

newly allocated block. The driver updates the flags on the flash memory in 

the following order: Step 1. mark the newly allocated block as allocated, Step

2. write the block number and then write new data to the allocated block, 

Step 3. mark the allocated block as pre-valid, Step 4. mark the invalidated 

block as invalid, and Step 5. mark the allocated block as valid. 

The above steps guarantee that the flag values of the newly allocated and 

invalidated blocks never become the same under any circumstances. 

Therefore, even after a crash (e. g. , a power failure) during any one of the 

above steps, the driver can choose one of the blocks that hold the fully 

written data. This method is of course not sufficient to maintain complete file

system consistency, but it helps suppress unnecessary ambiguity at the 

device level. Figure 2. Bank list and cleaning bank list. When a segment is 

selected to be cleaned, the bank containing that segment is moved to the 

cleaning bank list. 

The bank stays in the list until an erasure operation on the segment finishes. 

Because the bank is no longer on the bank list, it never becomes an active 

bank, and thus avoids being written during the erase operation. The driver 

https://assignbuster.com/a-flash-memory-based-file-system/



A flash-memory based file system – Paper Example Page 8

maintains the flag update queue to handle the flag update procedure, 

described in the previous section, on blocks in the bank of which segment is 

being erased. The driver avoids issuing a data write on a bank being cleaned 

by separating the bank list and the cleaning bank list. However, when a 

block is logically overwritten, an invalidated block might belong to that bank.

In such a case, the driver postpones the flag update procedure steps 4 and 

5, by entering the pair of the newly allocated and the invalidated blocks into 

the queue. All the pairs are processed when the erasure finishes. Note that 

even if the pairs are not processed due to a crash during the erasure, the 

driver can recover flag consistency because of the flag update order (Step 3 

for each pair has been completed before the crash occurs. ). The queue 

should be able to hold the number of pairs that are expected to be entered 

during an erasure. 

For example, the current implementation can generate 500 pairs for 1 

erasure [i. e. , 500 blocks (250 KBytes) per second], and thus has 600 entries

in the queue. Should the queue be exhausted, the driver will stop writing 

until the erasure is complete. We have not yet experienced this condition. 2. 

5 Bank Management To manage block allocation and cleaning, the driver 

maintains a bank list and a cleaning bank list. Figure 2 shows the 

relationship between these lists. The driver allocates a new data block from 

the active bank, so data write operations take place only on the active bank. 

When the free blocks in the active bank are exhausted, the driver selects 

from the bank list the bank that has the most free segments (i. e. , free 

blocks) and makes it the new active bank. 2. 6 Translation Table The 

https://assignbuster.com/a-flash-memory-based-file-system/



A flash-memory based file system – Paper Example Page 9

translation table data structure contains all information needed to manage 

the translation of a block number to an address and to manage the erase log

of each segment. During the system boot time, the driver scans the flash 

memory system and constructs this translation table and other structures 

from the on-chip segment summaries. (To Appear in USENIX ’95 Winter) 3 

Page Number will be erased in the final version) Figure 3 shows the 

relationship between the translation table and the block information entries. 

During the system boot time the driver scans all the segment summaries one

by one. If it finds a valid block, it records a triplet (bank no. , segment no. , 

block no. ) describing the block in a table entry indexed by the physical block

number. After the boot, the driver refers only to the translation table to 

access data blocks on the flash memory when a read operation is requested. 

The address of each block can be computed from the triplet. 

The driver translates a requested physical block number to the address of a 

corresponding flash memory data block and simply copies the contents of 

the data block to the upper layer. When a write operation is requested, the 

driver checks whether it has already allocated a flash memory data block for 

a requested physical block. If it has, the allocated block is invalidated. The 

driver allocates a new flash memory data block, updates the translation 

table, and copies the requested data to the newly allocated block, while 

updating the flags. Command FLIOCCWAIT FLIOCCCBLK Description Wait 

until a segment is selected to be cleaned. 

Copy 16 valid blocks of the selected segment. Return 0 if no more valid 

blocks exist in the segment . Start erasing the segment. Return 0 when the 

erasure is complete. FLIOCCIERS Table 2. ioctl commands for the cleaner. 

https://assignbuster.com/a-flash-memory-based-file-system/



A flash-memory based file system – Paper Example Page 10

The cleaner is divided into three parts: policy, copying and erasing, and 

internal data maintenance. All jobs are executed in kernel-space, though 

copying and erasing are conducted by a daemon running in user-space. As 

discussed in [4], implementing a cleaner as a user process makes the 

system flexible when changing or adding a cleaning policy or algorithm, or 

both. 

By communicating with the kernel through the use of system calls and the 

ifile, the BSD LFS cleaner does almost all jobs in user-space. Our driver, in 

contrast, does the cleaning jobs in kernel-space as Sprite LFS does. We use a

daemon to make the copying process concurrent with other processes. We 

took this approach for its ease of implementation. While data is being 

written, cleaning policy codes are executed when a block is invalidated. If 

cleaning policy conditions are satisfied for a segment, the driver adds it to 

the cleaning list and wakes up the cleaner daemon to start copying valid 

blocks. 

Upon awakening, the cleaner daemon invokes the copy command repeatedly

until all valid blocks are copied to the clean segments. Then, it invokes the 

erase command and the driver starts erasing the segment by issuing an 

erase command of the flash memory. The copying is performed by codes 

within the driver. The cleaning daemon controls the start of the copying. It 

makes the copying concurrent with other processes. We added three ioctl 

commands for the cleaner daemon (Table 2). The daemon first invokes 

FLIOCCWAIT and then waits (usually) until a segment to be cleaned is 

selected. 

https://assignbuster.com/a-flash-memory-based-file-system/



A flash-memory based file system – Paper Example Page 11

As an application program writes or updates data in the file system, the 

device driver eventually encounters a segment that needs to be cleaned. 

The driver then wakes up the cleaner daemon and continues its execution. 

Eventually, the daemon starts running and invokes FLIOCCCBLK repeatedly 

until all the valid blocks are copied to a new segment. On finishing the copy 

operation, the daemon invokes FLIOCCIERS, which causes the driver to issue 

an erase command to the flash memory. The daemon invokes FLIOCCWAIT 

again and waits until another segment needs to be cleaned. 2. 7 Cleaner 

The segment cleaning operation takes place during the allocation process 

when the number of available flash memory blocks for writing becomes low. 

This operation selects a segment to be cleaned, copies all valid data in the 

segment to another segment, and issues a block erase command for the 

selected segment. The cleaning process is the same as that of LFS except 

that it explicitly invokes the erase operation on the segment. 0 i ©• ©• ©• 

©• bank no. l segment no. m block no. n ©• ©• ©• ©• Block©–address 

translation table ©• ©• physical block no. i flag 0, 1, 2, 3 ©• ©• ©• ©• ©• 

©• 

Summary (Data block for i) ©• ©• ©• Data block array Segment m of bank 

n Figure 3. Relationship between the block–address translation table and a 

block information entry. (To Appear in USENIX ’95 Winter) 4 (Page Number 

will be erased in the final version) 2. 8 Cleaning Policy For our driver, the 

cleaning policy concerns: • When the cleaner executes, and, • Which 

segments is to be cleaned. The flash memory hardware permits multiple 

segments to be erased simultaneously as long as each segment belongs to 

https://assignbuster.com/a-flash-memory-based-file-system/



A flash-memory based file system – Paper Example Page 12

the different bank. This simultaneous erasure provides a higher block-reclaim

rate. 

For simplicity, however, the current implementation cleans one segment at a

time. The cleaner never tries to enhance logical block locality during its 

copying activity. It simply collects and copies live data in a segment being 

cleaned to a free segment. In order to select a segment to clean, the driver 

is equipped with two policies: “ greedy” and “ cost-benefit” [3] polices. The 

driver provides ioctl commands to choose the policy. The greedy policy 

selects the segment containing the least amount of valid data, and the cost-

benefit policy chooses the most valuable segment according to the formula: 

age ? 1 ? u ) benefit = , cost 2u where u is the utilization of the segment and 

age is the time since the most recent modification (i. e. , the last block 

invalidation). The terms 2u and 1-u respectively represent the cost for 

copying (u to read valid blocks in the segment and u to write back them) and

the free space reclaimed. Note that LFS uses 1+u for the copying cost 

because it reads the whole segment in order to read valid blocks in the 

segment for cleaning. The cleaning threshold defines when the cleaner starts

running. 

From the point of view of the load put upon the cleaner, the cleaning should 

be delayed as long as possible. The delay should produce more blocks to be 

invalidated and consequently reduce the number of valid blocks that must 

be copied during the cleaning activity. Delaying the cleaning activity too 

much, however, reduces the chances of the cleaning being done in parallel 

with other processes. This reduction may markedly slow the system. Our 

https://assignbuster.com/a-flash-memory-based-file-system/



A flash-memory based file system – Paper Example Page 13

driver uses a gradually falling threshold value that decreases as the number 

of free segments decreases. 

The curve A in Figure 4 shows the threshold of the current implementation. It

shows that • When enough (N) free segments are available, the cleaner is 

not executed, • When the number of free segments becomes smaller than N 

and if there are some segments whose policy accounts are greater than Th, 

cleaning starts with the segment that has the greatest policy accounts, and •

As the number of free segments becomes smaller, the threshold becomes 

lower so that more segments can be chosen with lower policy accounts. For 

the greedy policy of the current implementation, N is 12 and Th is 455 

invalid blocks. 

That is, when the number of free segments becomes 12, segments that 

contain more than 455 invalid blocks are cleaned. For the cost-benefit policy,

N is 12 and Th is set to the value that is equivalent to being unmodified 30 

days with one invalid block. For both the policies, segments having no valid 

blocks are always cleaned before other segments. The threshold curve 

enables the driver to stop the cleaner as long as enough free segments are 

available and also to start the cleaner at a slow pace. For example, suppose 

the driver employs a policy such as “ When the number of free segments 

becomes Nb, start the cleaner. (This policy is represented by the threshold 

curve B in Figure 4. ) When the number of free segments became Nb the 

cleaner would start cleaning even if the most invalidated segment had only 

one invalid block. Furthermore, if the live data in the file system counted 

more than Ns-Nb segments (where Ns is a total number of segments), the 

cleaner would run every time a block was invalidated. This would result in a 

https://assignbuster.com/a-flash-memory-based-file-system/



A flash-memory based file system – Paper Example Page 14

file system that was impractically slow and had an impractically short 

lifetime. 3. Performance Measurements and Discussion 

Unlike a HDD-based file system, the prototype is free from seek latency and 

it is thu expected to show nearly the same performance for both sequential 

and random read operations. In fact, for reading 4Kbyte blocks from 12. 6 

Mbytes of data, the sequential and random throughputs of the driver are 

respectively 644 and 707 Kbytes/s. (For the same tasks, the through 

throughputs of MFS [7] are 647 and 702 Kbytes/s. ) Policy accounts Th A B 0 

Ns Number of free segments Figure 4. Cleaning threshold. N Nb 2 0 (To 

Appear in USENIX ’95 Winter) 5 (Page Number will be erased in the final 

version) 

Flash Memory System Flash memory Banks Segments Segment size Data 

blocks Erase cycle bandwidth Write bandwidth Read bandwidth CPU Cache 

Memory bandwidth Instruction read Data read Data write Intel 28F008SA (1 

Mbyte/chip) 8 64 (8 segments/bank) 256 Kbytes 32256 (504 blocks/segment)

1 sec. 252 Kbytes/sec. 400 Kbytes/sec. 4 Mbytes/sec. IDT R3081 (R3000 

compatible) Instruction 16 Kbytes Data 4 Kbytes 20 Mbytes/sec. 7 

Mbytes/sec. 5 Mbytes/sec. Write Throughput (KByte/s) Write throughput 

(KBytes/s) 300 250 200 150 100 50 0 0 50 100 150 30% 60% 90% CPU and 

Main Memory System 

Cumulative MBytes Written Cumulative MBytes written Figure 5. Sequential 

write performance. Initial data 30% 60% 90% Average throughput (Kbytes/s) 

231 230 199 Number of erased segments 749 766 889 Number Total data 

written of copied (Mbytes) blocks 0 192 0 192 57 266 192 200 Table 3. Test-

https://assignbuster.com/a-flash-memory-based-file-system/



A flash-memory based file system – Paper Example Page 15

platform specifications. The write performance of the prototype, on the other

hand, is affected by the cleaning, as is the case with LFS. The benchmark 

platform consists of our hand-made computer running 4. 4BSD UNIX with a 

40MHz R3081 processor and 64 Mbytes of main memory. The size of the 

buffer cache is 6 Mbytes. 

Table 3 summarizes the platform specification†. Table 4. Summary of 

sequential write performance. more than 53 segments for the 90% data, the 

cleaning threshold was kept near 410 invalid blocks in a segment throughout

the test. Consequently, the cleaner copied an average of 64 blocks per 

erasure and lowered the write throughput. 3. 1 Sequential Write Performance

The goal of our sequential write performance test was to measure the 

maximum throughput that can be expected under certain conditions. When a

large amount of data is written sequentially, our driver invalidates blocks in 

each segment sequentially. 

The driver therefore needs no copying for cleaning a segment and the 

maximum write performance can be obtained. Figure 5 shows the sequential

write throughput as a function of cumulative data written, and Table 4 

summarizes the results. The results were obtained by first writing a certain 

amount of data and then repeatedly overwriting that initial data. The curves 

show results based on different initial data: 4. 2 Mbytes (30% of the file 

system capacity), 8. 4 Mbytes (60%), and 12. 6 Mbytes (90%). The greedy 

policy was used for cleaning. The results obtained with the 90% initial data 

load were unexpected. 

https://assignbuster.com/a-flash-memory-based-file-system/



A flash-memory based file system – Paper Example Page 16

Although the data were overwritten sequentially, many blocks were copied 

for cleaning. This copying was a result of the effect of the cleaning threshold 

described earlier. Since the live data counts † The actual hardware had 128 

segments (16 segments/block), but in the work reported here we used only 

half the segments of each bank. 3. 2 Random Write Performance The random

write performance test evaluated the worst case for our driver. When a 

randomly selected portion of a large amount of data is overwritten, all the 

segments are invalidated equally. If the invalidation takes place unevenly (e.

g. sequentially), some segments are heavily invalidated, and thus can be 

cleaned with a small amount of copying. The even invalidation caused by the

random update, however, results in there being less chance to clean 

segments that are particularly highly invalidated. Therefore, the cleaning 

cost approaches a constant value for all segments. For our driver, the 

copying cost is expected to be a function of the ratio of used space to free 

space in the file system. As new data are written to the free segments, the 

used segments are invalidated evenly. The free segments are eventually 

exhausted and the cleaner starts cleaning. 

Consequently, the ratio of valid to invalid blocks of each segment becomes 

that of the ratio of used to free space of the file system. Figure 6 and Table 5

show the results of the random write test. These results were obtained by 

writing a 4Kbyte data block to a randomly selected position of various 

amounts of initial data: again, 4. 2, (To Appear in USENIX ’95 Winter) 6 (Page

Number will be erased in the final version) /usr/motoG/tmp/hot-cold-

merged/cum. eps Write Throughput (KByte/s) Write throughput (KBytes/s) 

300 250 200 150 100 50 0 0 30% 60% 90% Write throughput (KBytes/s) 

https://assignbuster.com/a-flash-memory-based-file-system/



A flash-memory based file system – Paper Example Page 17

Write Throughput (KByte/s) 60 640-116, Greedy 5 50 45 40 35 30 0 50 100 

150 200 640-116, Cost-Benefit 50 100 150 200 Cumulative MBytes Written 

Cumulative MBytes written Figure 6. Random write performance. Initial data 

30% 60% 90% Average throughput (Kbytes/s) 222 147 40 Number of erased 

segments 801 1066 2634 Number Total data written of copied (Mbytes) 

blocks 26 383 192 155 856 192 938 294 192 Cumulative MBytes written 

Cumulative MBytes Written Figure 7. Hot-and-cold write performance. 

Cleaning policy Average throughput (Kbytes/s) 51 Nomuber of erased 

segments 2617 Nomuber of copied blocks 925 193 Test 640-116 Table 5. 

Summary of random write performance. 8. 4, and 12. Mbytes. And again the 

greedy policy was used for cleaning. Greedy Cost43 3085 1 161 090 Benefit 

Initial data: 90% (12. 6 Mbytes), Total data written: 192 Mbytes Table 6. 

Summary of hot-and-cold write performance. 3. 4 Separate Segment for 

Cleaning The initial results obtained in the hot-and-cold write test were far 

worse than we had expected. The write throughput of the 640-116 test was 

nearly the same as that of the random test using the greedy policy. 

Furthermore, the greedy policy worked better than the cost-benefit policy for

the 640-116 test. Figure 8 shows the distribution of segment utilization after 

the 640-116 test. 

In the figure, we can observe a weak bimodal distribution of segment 

utilization. Since the 60% of the data was left unmodified, more fully valid 

segments should be present. We traced the blocks that the cost-benefit 

policy once judged as cold in the test, and Figure 9 shows the distribution of 

the cold and the not-cold blocks in the segments after executing the 640-116

test. The data in 14 3. 3 Hot-and-Cold Write Performance This test evaluated 

https://assignbuster.com/a-flash-memory-based-file-system/



A flash-memory based file system – Paper Example Page 18

the performance cases where write accesses exhibited certain amounts of 

the locality of reference. In such cases, we can expect he cost-benefit policy 

to force the segments into a bimodal distribution where most of the 

segments are nearly full of valid blocks and a few are nearly full of invalid 

blocks [3]. Consequently, the cost-benefit policy would result in a low 

copying overhead. We will see that our first results did not match our 

expectations; we will then analyze why this anomaly occurred and what 

measures we took to address it. Figure 7 and Table 6 show the results of the 

test. 640-116 means that 60% of the write accesses go to one-eighth of the 

initial data and other 40% go to another one-eighth. The other three-fourths 

of the data are left unmodified. 

With this distribution we intend to simulate meta data write activity on an 

actual file system. The ratio of writes is based on the results reported in [5], 

which found that 67-78% of writes are to meta data blocks. In all the tests 

we conducted, an actual write position in a selected portion of the initial data

was decided randomly, the size of the initial data was 12. 6 Mbytes (90%), 

and all writes were done in 4Kbyte units. Number of Segments Number of 

segments 12 10 8 6 4 2 0 0 0. 2 0. 4 0. 6 0. 8 Segment Utilization Segment 

Utilization 1 Figure 8. Segment utilization distribution after the 640-116 test. 

(To Appear in USENIX ’95 Winter) (Page Number will be erased in the final 

version) Initial data 30% 60% 70% 80% 90% Separate segment No Yes No 

Yes No Yes No Yes No Yes Average throughput (Kbytes/s) 241 239 197 198 

135 143 81 127 43 60 Number of erased segments 742 744 888 832 1195 

883 1855 1089 Number of copied blocks 0 0 63 627 33 997 214 894 57 205 

544 027 157 922 MFS Average elapsed time for each run Phase Phase Phase 

https://assignbuster.com/a-flash-memory-based-file-system/



A flash-memory based file system – Paper Example Page 19

Phase Phase 1 2 3 4 5 1. 3 8. 0 13. 1 16. 9 80. 6 119. 9 Prototype 52-56% 92-

96% 2. 0 9. 5 13. 5 16. 9 81. 8 123. 7 2. 9 11. 5 13. 5 17. 1 84. 0 129. 0 Total

Number of written blocks for data Number of copied blocks Number of 

erased segments 51 818 233 702 75 227 255 020 578 903 3085 1 161 090 

2218 723 582 Total data written: 192 Mbytes Table 7. Summary of 640-116 

tests using the separate cleaning segment. this figure was obtained by 

marking a block as “ cold” when the segment to which the block belongs was

chosen to be cleaned and its utilization was less than the average utilization 

in the file system. We can see that some segments contain both cold and 

not-cold blocks. Furthermore, the number of cold blocks is much smaller than

expected: since three-fourths of the 12. 6 Mbytes of initial data were left 

unmodified, we would expect, in the best case, about 19 000 cold blocks 

(i. . , about 38 cold segments). In the test, however, the actual number of 

cold blocks was 2579. The reason we determined for the above results is 

that the driver uses one segment for both the data writes and the cleaning 

operations; the valuable, potentially cold blocks are mixed with data being 

written to the segment. The number of cold blocks therefore does not 

increase over time. To address this problem, we modified the driver so that 

the driver uses two segments: one for cleaning cold segments and one for 

writing the data and cleaning the not-cold segments. 

Table 7 summarizes the results of 640-116 tests on both the modified and 

the original drivers. The effect of the separate cleaning segment becomes 

notable as the initial utilization grows, and the write throughput was 

improved more than 40% for the 90% initial data. Figure 10 shows the 

Number of segments 25 20 15 10 5 0 0. 0 0. 25 0. 5 0. 0 0. 75 1. 0 0. 5 0. 25 

https://assignbuster.com/a-flash-memory-based-file-system/



A flash-memory based file system – Paper Example Page 20

1. 0 0. 75 Table 8. Andrew Benchmark results. distribution of cold blocks 

after the 640-116 test using the modified driver. Many cold segments are 

observed. 3. 5 Andrew Benchmark 

Table 8 lists the results of the Andrew benchmark [6] for MFS and for our 

prototype. The results were obtained by repeating the benchmark run 60 

times. The output data files and directories of each run were stored in a 

directory, and to limit the file system usage the oldest directory was 

removed before each run after 14 contiguous runs for the 52-56% test, after 

24 for the 92-96% test, and after 9 for the MFS test. Note that, as pointed 

out in [4], phases 3 and 4 performed no I/O because all the data access were

cached by the higher-level buffer and the inode caches. 

The benchmark consists of many read operations and leaves a total of only 

about 560 Kbytes of data for each run. As a result, there are many chances 

to clean segments without disturbing data write operations. Therefore, our 

prototype shows performance nearly equivalent to that of MFS. We expect 

that similar access patterns often appear in a personal computing 

environment. Note that the cleaner erased 903 Number of segments 25 20 

15 10 5 0 0. 0 0. 25 0. 5 0. 0 0. 75 1. 0 0. 5 0. 25 1. 0 0. 75 Ratio of not-cold 

blocks Ratio of not-cold block Ratio of cold blocks Ratio of cold blocks Figure 

9. 

Distribution of cold and not-cold blocks after the 640-116 test. Figure 10. 

Distribution of cold and not-cold blocks after the 640-116 test using the 

separate cleaning segment. (To Appear in USENIX ’95 Winter) 8 (Page 

Number will be erased in the final version) segments for the 92-96% test; 

https://assignbuster.com/a-flash-memory-based-file-system/



A flash-memory based file system – Paper Example Page 21

under the same load (15 segments in 2 minutes), our prototype will survive 

about 850 000 minutes (590 days). 4. Related Work Logging has been widely

used in certain kinds of devices; in particular, in Write-Once Read-Many 

(WORM) optical disk drives. WORM media are especially suitable for logging 

because of their append-only writing. 

OFC [8] is a WORM-based file system that supports a standard UNIX file 

system transparently. Although its data structures differ from those of our 

prototype, our prototype’s block-address translation scheme is very similar 

to that of OFC. OFC is self-contained in that it stores all data structures on a 

WORM medium and needs no read-write medium such as a HDD. To get 

around the large memory requirement, it manages its own cache to provide 

efficient access to the structure. Our prototype, however, needs 

improvement with regard to its memory requirement (about 260 Kbytes for a

16-Mbyte flash memory system). 

LFS [3] uses the logging concept for HDDs. Our prototype is similar to LFS in 

many aspects, such as segment, segment summary, and segment cleaner, 

but LFS does not use block-address translation. LFS incorporates the FFS 

index structure into the log so that data retrieval can be made in the same 

fashion as in the FFS. That is, each inode contains pointers that directly point

to data blocks. Our prototype, on the other hand, keeps a log of physical 

block modification. LFS gathers as many data blocks as possible to be written

in order to maximize the throughput of write operations by minimizing seek 

operations. 

https://assignbuster.com/a-flash-memory-based-file-system/



A flash-memory based file system – Paper Example Page 22

Since flash memory is free from seek penalty, maximizing the write size does

not necessarily improve performance. The paper on BSD-LFS [4] reports that 

the effect of the cleaner is significant when data blocks are updated 

randomly. Under these conditions, each segment tends to contain fewer 

invalid data blocks and the cleaner’s copying overhead accounts for more 

than 60% of the total writes. With our prototype, this overhead accounts for 

about 70% on the 90%-utilized file system. Since flash memory offers a 

limited number of write/erase cycles on its memory cell, our driver requires 

the block translation mechanism. 

Logical Disk (LD) [9] uses the same technique to make a diskbased file 

system log-structured transparently. Although the underlying storage media 

and goals are different, both the driver and LD function similarly. LD does, 

though, provides one unique abstract interface called block lists. The block 

lists enable a file system module to specify logically related blocks such as 

an inode and its indirect blocks. Such an interface might be useful for our 

driver by enabling it to cluster hot and cold data. Douglis et al. [10] have 

examined three devices from the viewpoint of mobile computing: a HDD, a 

flash disk, and a flash memory. 

Their simulation results show that the flash memory can use 90% less 

energy than a disk-based file system and respond up to two orders of 

magnitude faster for read but up to an order of magnitude slower for write. 

They also found that, at 90% utilization or above, a flash memory erasure 

unit that is much larger than the file system block size will result in 

unnecessary copying for cleaning and will degrade performance. The flash-

https://assignbuster.com/a-flash-memory-based-file-system/



A flash-memory based file system – Paper Example Page 23

memory-based storage system eNVy [11] tries to provide high performance 

in a transaction-type application area. 

It consists of a large amount of flash memory, a small amount of 

batterybacked SRAM for write buffering, a large-bandwidth parallel data path

between them, and a controller for page mapping and cleaning. In addition 

to the hardware support, it uses a combination of two cleaning policies, FIFO 

and locality gathering, in order to minimize the cleaning costs for both 

uniform and hot-and-cold access distribution. Simulation results show that at

a utilization of 80% it can handle 30 000 transactions per second while 

spending 30% processing time for cleaning. 

Microsoft Flash File System (MFFS) [2] provides MS-DOS-compatible file 

system functionality with a flash memory card. It uses data regions of 

variable size rather than data blocks of fixed length. Files in MFFS are 

chained together by using address pointers located within the directory and 

file entries. Douglis et al. [10] observed that MFFS write throughput 

decreased significantly with more cumulative data and with more storage 

consumed. SunDisk manufactures a flash disk card that has a small erasure 

unit, 576 bytes [12]. Each unit takes less time to be erased than does Intel’s 

16Mbit flash memory. 

The size enables the card to replace a HDD directly. The driver of the card 

erases data blocks before writing new data into them. Although this erase 

operation reduces the effective write performance, the flash disk card shows 

stable performance under high utilization because there is no need to copy 

live data [10]. In a UNIX environment with FFS, simply replacing the HDD 

https://assignbuster.com/a-flash-memory-based-file-system/



A flash-memory based file system – Paper Example Page 24

with the flash disk would result in unexpected short life because FFS meta 

data such as inodes are located at fixed blocks and are updated more often 

than user data blocks. 

The flash disk card might perform well in the UNIX environment if a proper 

wear-leveling mechanism were provided. (To Appear in USENIX ’95 Winter) 9

(Page Number will be erased in the final version) 5. Conclusion Our prototype

shows that it is possible to implement a flash-memory-based file system for 

UNIX. The benchmark results shows that the proposed system avoids many 

of the problems expected to result from flash memory’s overwrite 

incapability. The device driver approach makes it easy to implement this 

prototype system by using the existing FFS module. 

But because the FFS is designed for use with HDD storage, this prototype 

needs to use a portion of the underlying flash memory to hold data 

structures tuned for a HDD. Furthermore, the separation of the device driver 

from the file system module makes the prototype system management 

difficult and inefficient. For example, there is no way for the driver to know 

whether or not a block is actually invalid until the FFS module requests a 

write on the block—even if the file for which the block was allocated had 

been removed 15 minutes before. A file system module should therefore be 

dedicated to flash memory. 8] T. Laskodi, B. Eifrig, and J. Gait, “ A UNIX File 

System for a Write-Once Optical Disk”, Proc. ’88 Summer USENIX, 1988. [9] 

W. de Jonge, M. F. Kaashoek, and W. C. Hsieh, “ Logical Disk: A Simple New 

Approach to Improving File System Performance”, Technical Report 

MIT/LCS/TR-566, Massachusetts Institute of Technology, 1993. [10] F. 

Douglis, R. Caceres, F. Kaashoek, K. Li, B. Marsh, and J. A. Tauber, “ Storage 

https://assignbuster.com/a-flash-memory-based-file-system/



A flash-memory based file system – Paper Example Page 25

Alternatives for Mobile Computers”, Proc. 1st Symposium on Operating 

Systems Design and Implementation, 1994. [11] M. Wu and W. Zwaenepoel, 

“ eNVy: A Non-Volatile, Main Memory Storage System”, Proc. th International 

Conference on Architectural Support for Programming Languages and 

Operating Systems, 1994. [12] “ Operating system now has flash EEPROM 

management software for external storage devices” (in Japanese), Nikkei 

Electronics, No. 605, 1994. Acknowledgments We thank the USENIX 

anonymous referees for their comments, Douglas Orr for valuable 

suggestions and comments on the drafts, Fred Douglis for making his draft 

available to us, and Satyanarayanan-san and the Information Technology 

Center, Carnegie-Mellon University for providing us the Andrew Benchmark. 

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation. 

Author Information Atsuo Kawaguchi is a research scientist at the Advanced 

Research Laboratory, Hitachi, Ltd. His interests include file systems, memory

management system, and microprocessor design. He received B. S. , M. S. , 

and Ph. D. degrees from Osaka University. He can be reached at 

[email protected] hitachi. co. jp. All the authors can be reached at Advanced 

Research Laboratory, Hitachi, Ltd. Hatoyama, Saitama, 350-03 Japan. 

References [1] Advanced Micro Devices, Inc. , “ Am29F040 Datasheet”, 

1993. [2] Flash Memory, Intel Corporation, 1994. [3] M. Rosenblum and J. K. 

Ousterhout, “ The Design and Implementation of a Log-Structured File 

System”, ACM Transactions on Computer Systems, Vol. 0, No. 1, 1992. [4] M.

Seltzer, K. Bostic, M. K. McKusick, and C. Staelin, “ An Implementation of a 

Log-Structured File System for UNIX”, Proc. ’93 Winter USENIX, 1993. [5] C. 

Ruemmler and J. Wilkes, “ UNIX disk access patterns”, Proc. ’93 Winter 

https://assignbuster.com/a-flash-memory-based-file-system/



A flash-memory based file system – Paper Example Page 26

USENIX, 1993. [6] J. H. Howard, et al. , “ Scale and Performance in a 

Distributed File System”, ACM Transactions on Computer Systems, Vol. 6, 

No. 1, 1988. [7] M. K. McKusick, M. J. Karels, and K. Bostic, “ A Pageable 

Memory Based Filesystem”, Proc. ’90 Summer USENIX, 1990. (To Appear in 

USENIX ’95 Winter) 10 (Page Number will be erased in the final version) 

https://assignbuster.com/a-flash-memory-based-file-system/


	A flash-memory based file system

