Relations and functions

Science, Mathematics

ASSIGN BUSTER

Week Five Discussion: Relations and Functions The first equation, I have selected is $f(x)=4$. The points on the graph of the first equation are $(-7,4)$, $(-5,4),(-3,4),(-1,4),(0,4),(1,4),(3,4),(5,4)$ and $(7,4)$. The equation does not involve any x-term; therefore, y value is same for all the points.

There is no x-intercept. The y-intercept is 4 that is at $(0,4)$. As such, there is no start/end point. This is because the graph of the equation goes to infinity ($-\infty$ or $+\infty$) both sides (left and right) of the y-axis.

The graph of the equation is a horizontal line 4 units above the x-axis and is located on I and II quadrants.

The domain (D) for the first equation is the set of all real numbers. In interval notation, this can be written as
$D=(-\infty, \infty)$
The range (R) for the first equation is 4 . In interval notation, this can be written as
$R=[4]$
The equation $f(x)=4$ is a function as it passes the vertical line test.
The second equation, I have selected is $x=(y+2)^{\wedge} 2$. The calculations for the points on the graph are given below:

For $y=1, x=(1+2)^{\wedge} 2=(3)^{\wedge} 2=9$
For $y=0, x=(0+2)^{\wedge} 2=(2)^{\wedge} 2=4$
For $y=-1, x=(-1+2)^{\wedge} 2=(1)^{\wedge} 2=1$
For $y=-2, x=(1+2)^{\wedge} 2=(0)^{\wedge} 2=0$
For $y=-3, x=(-3+2)^{\wedge} 2=(-1)^{\wedge} 2=1$
For $y=-4, x=(-4+2)^{\wedge} 2=(-2)^{\wedge} 2=4$
For $y=-5, x=(-5+2)^{\wedge} 2=(-3)^{\wedge} 2=9$

The points on the graph of the first equation are $(9,1),(4,0),(1,-1),(0,-2)$, ($1,-3$), ($4,-4$) and ($9,-5$).

The x-intercept is 4 that is at $(4,0)$ and the y-intercept is -2 that is at $(0,-2)$. The vertex is at ($0,-2$). As such, there is no start/end point. This is because the graph of the equation goes to positive infinity ($+\infty$) both sides (up and down) of the x-axis and intercept the y-axis at ($0,-2$).

The graph of the equation is a parabola and is located on I and IV quadrants. The domain (D) for the second equation is the set of all real numbers greater or equal to 0 . In interval notation, this can be written as $\mathrm{D}=[0, \infty)$

The range (R) for the second equation is the set of all real numbers. In interval notation, this can be written as
$R=(-\infty, \infty)$
The equation $x=(y+2)^{\wedge} 2$ is a relation as it does not pass the vertical line test.

I selected transformation of the first equation, $\mathrm{f}(\mathrm{x})=4$. When the equation is shifted three units upward, the new equation would be $f(x)=4+3=7$

And now shifting four points to the left the resulting equation would be $f(x)=7$ (no change in the equation, as there is no x-term)

If the first equation, $f(x)=4$ is shifted three units upward and four points to the left, the resulting transformed equation would be $f(x)=7$. There is no $x-$ intercept and the y-intercept is 7 that is at (0,7).

