Vector theorems math problem example

Science, Mathematics

ASSIGN BUSTER

Vector Theorems

XXXXX No. XXXXX MATHEMATICS VECTOR THEOREMS GEOMETRY XYZ 15
November, Theorem: A triangle and its medial triangle have the same centroid.

Suppose that $A B C$ is a given triangle as shown in the figure below with vertices given as
$A=(a 1, a 2), B=(b 1, b 2)$, and $C=(c 1, c 2)$.
Figure 1
Let D, E, and F be the mid-points of sides $A B, B C$, and $A C$ respectively. By joining these points, a triangle DEF is formed which is called medial triangle. This medial triangle is sometimes also known as auxiliary triangle (Dixon, 1991). The medial triangle DEF consists of the vertices
$D=(d 1, d 2)=((a 1+b 1) / 2,(a 2+b 2) / 2)$
$\mathrm{E}=(\mathrm{e} 1, \mathrm{e} 2)=((\mathrm{b} 1+\mathrm{c} 1) / 2,(\mathrm{~b} 2+\mathrm{c} 2) / 2)$
$\mathrm{F}=(\mathrm{f} 1, \mathrm{f} 2)=((\mathrm{a} 1+\mathrm{c} 1) / 2,(\mathrm{a} 2+\mathrm{c} 2) / 2)$
Now let KLM be the mid points of DE, DF, and EF respectively. By joining these points we get another triangle KLM i. e. the medial triangle of DEF. Therefore,
$K=(k 1, k 2)=((a 1+b 1) / 2+(b 1+c 1) / 2),(a 2+b 2) / 2+(b 2+c 2) / 2)$
$=((a 1+2 b 1+c 1) / 4,(a 2+2 b 2+c 2) / 4)$
Similarly, $L=(I 1, I 2)=((2 a 1+b 1+c 1) / 4,(2 a 2+b 2+c 2) / 4)$, and $M=(m 1, m 2)=((a 1+b 1+2 c 1) / 4,(a 2+b 2+2 c 2) / 4)$

Since we have a medial triangle DEF as shown above, for convenience we draw the same triangle separately as shown below. Here D (a, 0, 0), E (0, b, $0)$, and $F(0,0, c)$ be the vertices of medial triangle while N is the centroid of
the triangle.
By distance formula, N has the coordinates as ($a / 3, b / 3, c / 3$).
Now DN $=\sqrt{ }\left[(a / 3-a)^{2}+(b / 3-0)^{2}+(c / 3-0)^{2}\right]$
$=\sqrt{ }\left(4 a^{2} / 9\right)+\left(b^{2} / 9\right)+\left(c^{2} / 9\right)$
$=\sqrt{ }\left[\left(4 a^{2}+b^{2}+c^{2}\right)\right] / 3$
$3 D N=\sqrt{ }\left[\left(4 a^{2}+b^{2}+c^{2}\right)\right](1)$
Let D^{\prime} be the mid-point of EF, therefore its coordinates will be ($0, \mathrm{~b} / 2, \mathrm{c} / 2$). Now we find the distance between N and D^{\prime}.
$D^{\prime} N=\sqrt{ }\left[(a / 3-0)^{2}+(b / 3-b / 2)^{2}+(c / 3-c / 2)^{2}\right.$
$=\sqrt{ }\left(a^{2} / 9\right)+\left\{\left(b^{2} / 9+b^{2} / 4-2(b / 3)(b / 2)\right\}+\left\{\left(c^{2} / 9+c^{2} / 4-2(c / 3)(c / 2)\right\}\right.\right.$
$=\sqrt{ }\left(a^{2} / 9\right)+\left(b^{2} / 36\right)+\left(c^{2} / 36\right)$
$=\sqrt{ }\left[\left(4 a^{2}+b^{2}+c^{2}\right)\right] / 6$
$6 \mathrm{D}^{\prime} \mathrm{N}=3 \mathrm{DN}$ as by using equation (1)
2 D'N = DN
Similarly $2 \mathrm{E}^{\prime} \mathrm{N}=\mathrm{EN}$, and $2 \mathrm{~F}^{\prime} \mathrm{N}=\mathrm{FN}$.
Thus, it means that the centroid is located two thirds of the way from the original vertex to the midpoint of the opposite side of the triangle.

Now, since we have a triangle $A B C$ and E is the middle point of $B C$, and P is the centroid of ABC . Therefore, by using above theorem we have $\mathrm{OP}=\mathrm{OA}+$ 2/3 AE. Now we will find the centroid of $A B C$.

Let $P=$ centroid of $A B C=O P=O A+2 / 3 A E$
Thus $\mathrm{P}=(\mathrm{a} 1+(2 / 3)[\mathrm{e} 1-\mathrm{a} 1], \mathrm{a} 2+(2 / 3)[e 2-\mathrm{a} 2])$
Then $P=(a 1+(2 / 3)[(b 1+c 1) / 2-a 1], a 2+(2 / 3)[(b 2+c 2) / 2-a 2])$
$P=(a 1+(b 1+c 1) / 3-(2 / 3) a 1, a 2+(b 2+c 2) / 3-(2 / 3) a 2)$
$\mathrm{P}=((\mathrm{a} 1+\mathrm{b} 1+\mathrm{c} 1) / 3,(\mathrm{a} 2+\mathrm{b} 2+\mathrm{c} 2) / 3)(2)$

Now we will find the centroid of DEF
Let $\mathrm{Q}=$ centroid of $\mathrm{DEF}=\mathrm{OQ}=\mathrm{OD}+2 / 3 \mathrm{DM}$
Then $\mathrm{Q}=(\mathrm{d} 1+(2 / 3)[m 1-\mathrm{d} 1], \mathrm{d} 2+(2 / 3)[m 2-\mathrm{d} 2])$
Then $\mathrm{Q}=(\mathrm{d} 1+(2 / 3)((\mathrm{a} 1+\mathrm{b} 1+2 \mathrm{c} 1) / 4-(a 2+\mathrm{b} 2) / 2), \mathrm{d} 2+(2 / 3)((\mathrm{a} 2+$ $b 2+2 c 2) / 4-(a 2+b 2) / 2))$
$\mathrm{Q}=(\mathrm{d} 1+(2 / 3)((-\mathrm{a} 1-\mathrm{b} 1+2 \mathrm{c} 1) / 4), \mathrm{d} 2+(2 / 3)((-\mathrm{a} 2-\mathrm{b} 2+2 \mathrm{c} 1) / 4))$
$\mathrm{Q}=((\mathrm{a} 1+\mathrm{b} 1) / 2+(-\mathrm{a} 1-\mathrm{b} 1+2 \mathrm{c} 1) / 6,(\mathrm{a} 2+\mathrm{b} 2) / 2+(-\mathrm{a} 1-\mathrm{b} 1+2 \mathrm{c} 1) / 6)$
$\mathrm{Q}=((2 \mathrm{a} 1+2 \mathrm{~b} 1+2 \mathrm{c} 1) / 6,(2 \mathrm{a} 2+2 \mathrm{~b} 2+2 \mathrm{c} 2) / 6)$
$\mathrm{Q}=((\mathrm{a} 1+\mathrm{b} 1+\mathrm{c} 1) / 3,(\mathrm{a} 2+\mathrm{b} 2+\mathrm{c} 2) / 3)(3)$
From above equation no. 2 and equation no. 3 it is evident that $\mathrm{P}=\mathrm{Q}$. Thus it has been proved that the centroid of the triangle $A B C$ is equal to the centroid of medial triangle DEF.

Reference
Dixon, R. (1991). Mathographics, New York: Dover, p. 56

