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1. Introduction 
Spiking Neural Networks (SNNs) received a renewed wave of interest from a 

computational point of view as a tool to move the huge overload in data 

analysis from the cloud to the edge. Indeed, they couple the neural network 

computing power with spike coding of information, which is considered a 

valid approach to reduce power requirement for the real-time analysis of 

unstructured data. This enables the process of in-situ decision making of 

autonomous systems ( Indiveri et al., 2013 ). SNNs are a complementary 

solution to conventional Neural Networks (NNs), which compute with real-

valued numbers and are currently used to remotely analyze the data 

uploaded to the cloud or at the edge only for inference, without online 

training ( Yu, 2018 ). Both NNs and SNNs require specific hardware to boost 

their performance and computing speed. On one side, hardware accelerators

of NNs, like graphical processing units and tensor processing units, are now 

widespread in the market. On the contrary, hardware supporting SNNs are 

mainly based on research platforms. In both cases, though, the lack of 

parallelism and separation between storage and computing units is still an 

issue, for which solutions are under investigation. To this aim, emerging 

memory devices, compatible with back-end of the production line of CMOS 

technology, and in particular resistive switching random access memories 

(RRAM), also named memristive devices, are considered among the best 

candidates for hardware solutions supporting NNs and SNNs. In particular, 

the so-called neuromorphic systems intend to use memristive devices to 

update, during training, and store, for inference, the synaptic weights of a 

network. 

https://assignbuster.com/non-linear-memristive-synaptic-dynamics-for-
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Since well-established robust and reliable training algorithms, like the back-

propagation of the gradient, is available for NNs, the requirements for 

memristive devices for NN accelerators have already been determined (

Chen et al., 2015 ; Gokmen and Vlasov, 2016 ; Sidler et al., 2016 ; Ambrogio 

et al., 2018 ; Fumarola et al., 2018 ; Moon et al., 2018 ). It has been shown 

that the memristive dynamics of the synapses, i. e., the evolution of the 

memristor conductance driven by train of identical pulses, determines the 

performance of the network ( Chen et al., 2015 ; Gokmen and Vlasov, 2016 ; 

Sidler et al., 2016 ; Fumarola et al., 2018 ; La Barbera et al., 2018 ; Brivio et 

al., 2019a ). In particular, NN accelerators trained through back-propagation 

require a memristive conductance evolving through many evenly-spaced 

levels (linear dynamics) ( Chen et al., 2015 ; Gokmen and Vlasov, 2016 ; 

Sidler et al., 2016 ; Fumarola et al., 2018 ). The same agreement on the 

required memristive synaptic dynamics in SNN can hardly be reached 

because various training protocols have been investigated with different 

results ( Brivio et al., 2019a ). Currently, SNN training attempts include on-

line spike-based procedures ( Payvand et al., 2018 ; Brivio et al., 2019a ; 

Donati et al., 2019 ) and off-line conventional training of a non-spiking NN 

that must be afterwards converted into an equivalent SNN ( Diehl et al., 

2015 , 2016 ; Sengupta et al., 2019 ). The former allows exploiting the full 

potential of memristive devices tuneability to achieve a real-time on-line 

adaptive operation. Among the spike-based training procedures, supervised 

learning rules inspired by the back-propagation exist ( Urbanczik and Senn, 

2014 ; Müller et al., 2017 ; Donati et al., 2019 ), which are seldom 

investigated for systems including realistic simulations of memristive devices
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( Nair et al., 2017 ; Payvand et al., 2018 ). On the contrary, the literature is 

extremely rich of reports dealing with networks trained by supervised ( Brivio

et al., 2019a ) and unsupervised versions of the so-called Spike Timing 

Dependent Plasticity (STDP) ( Diehl and Cook, 2015 ; Garbin et al., 2015 ; 

Querlioz et al., 2015 ; Ambrogio et al., 2016 ; La Barbera et al., 2018 ). Few 

reports indicate that non-linear memristive dynamics may be beneficial for 

STDP-based SNNs ( La Barbera et al., 2018 ; Brivio et al., 2019a ). A 

comprehensive review about neural networks and spiking neural networks 

including also memristive devices can be found in Bouvieret al. (2019) . In 

addition, the deployment of all the various emerging technologies for brain-

inspired computing is extensively described in Spiga et al. (2020) . 

In this paper, we aim at moving the first steps toward the optimization of the

training of a SNN through system-level simulations as a function of various 

experimentally-inspired memristive dynamics. Neuron model, training 

protocol, and architecture are also compatible with a hardware 

implementation in CMOS technology, as in the silicon chip described in 

Valentian et al. (2019) and Regev et al. (2020) . The investigated memristive

dynamics include linear and non-linear evolution bounded within extreme 

maximum and minimum values, as well as a non-linear evolution 

asymptotically approaching the boundary values (details are reported 

below). The response of the network is monitored throughout its training 

against the classification of hand-written digits from the MNIST dataset (

Lecun et al., 1998 ). We choose this particular task in order to allow a direct 

comparison with other results reported in the literature for NNs ( Chen et al., 

2015 ; Garbin et al., 2015 ; Ambrogio et al., 2018 ) and SNNs. ( La Barbera et
https://assignbuster.com/non-linear-memristive-synaptic-dynamics-for-
efficient-unsupervised-learning-in-spiking-neural-networks/
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al., 2018 ; Brivio et al., 2019a ) Furthermore, the comparison among the 

various memristive dynamics is performed in a quantitative manner through 

the definition of figures of merit that apply to any mathematical formulation 

for synaptic dynamics. We found that non-linear dynamics bounded within 

extreme values is the most versatile dynamics, which guarantees the best 

classification performance and the best compromise between training 

duration and classification accuracy. This result marks a clear difference with

respect to the recent finding related to conventional neural network 

accelerators trained through the back-propagation algorithm, which, 

according to a general agreement, require linear synapses ( Chen et al., 

2015 ; Gokmen and Vlasov, 2016 ; Ambrogio et al., 2018 ; Fumarola et al., 

2018 ). 

2. Methods 
2. 1. Network Architecture and Training 
Figure 1A presents the two-layers fully-connected feed-forward SNN 

simulated for the classification of hand-written digits from the MNIST dataset 

( Lecun et al., 1998 ). Simulations are performed with the event-based N2D2 

simulator tool ( Bichler et al., 2013 ). The full MNIST dataset is presented 

only once for training (60, 000 training digits), then testing (10, 000 testing 

digits). Each digit is composed of 28 × 28 pixels. The input layer converts 

the input digit with a spike frequency encoding: each input neuron generates

a spike train with a spiking rate f input proportional to the gray level of the 

corresponding input pixel. f input ranges from f MIN = 83 Hz to f MAX = 22. 2 

kHz with a total of 256 different gray levels. Spike trains are generated 

according to a Normal distribution. Each input digit is presented to the 

https://assignbuster.com/non-linear-memristive-synaptic-dynamics-for-
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network for 350 μs during the training phase. The input layer is composed of 

28 × 28 input neurons fully-connected by weighted synapses to the output 

layer composed of 500 Leaky Integrate-and-Fire (LIF) output neurons with a 

leak time constant τ leak = 120. 0 μs. Note that after an output neuron fires a

spike, it cannot integrate any incoming spikes for a refractory period t refrac 

= 1 ns. It also prevents all the other neurons of the layer from integrating 

incoming spikes for a period t inhibit = 10 μs, referred to as lateral inhibition . 

This allows implementing a Winner-Take-All (WTA) network between all the 

neurons ( Bichler et al., 2013 ). In addition, a slight delay in the firing time of 

output neurons has been introduced: when an output neuron reaches its 

threshold value, it fires a spike after a delay t emit . The parameter t emit for 

each output neuron has been randomly drawn from a normal distribution 

with a mean value μ = 0. 1 ns and a standard deviation σ = 1 ps. This 

facilitates the implementation of the WTA process. These parameters have 

been optimized by a genetic algorithm. The network is trained with an 

unsupervised simplified Spike-Timing-Dependent Plasticity (STDP) rule (

Figure 1B ) ( Suri et al., 2011 ; Querlioz et al., 2015 ): if the post-synaptic 

neuron spikes after the pre-synaptic neuron within a STDP time window t 

STDP = 60. 0 μs, the synapse increases its synaptic weight by a quantity δw + 

(synaptic potentiation event). Otherwise, its synaptic weight is decreased by 

a quantity δw − (synaptic depression event). Quantities δw + and δw − follow 

different dynamics models described in the following section. The weights 

are bounded between [0, 1] and are initialized to the value of 0. 8 before 

training. From a hardware point of view, the initialization of devices to a 

predefined value is more straightforward than a random initialization. In 

https://assignbuster.com/non-linear-memristive-synaptic-dynamics-for-
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particular, the weight value of 0. 8 (i. e., high memristive conductance) is 

coherent with an initialization performed in hardware with only an 

electroforming step, which is required for a large class of memristive devices

( Brivio and Menzel, 2020 ). Furthermore, the initialization does not influence

the obtained classification performances as demonstrated in Querlioz et al. 

(2013) . 

FIGURE 1  

(A)Simulated SNN for the MNIST classification.(B)Simplified STDP learning 

rule.(C)Example of spiking activity of four output neurons when four different

input digits are presented, and Classification Accuracy ( CA ) definition. 

Adapted with permission from Ly et al. (2018) . @IOP Publishing (2018). All 

rights reserved. 

During the training phase, each output neuron becomes sensitive to a 

specific class of digit as illustrated in the 2D conductance mapping in the top

left of Figure 1A (class of digit “ 8”). After training, each output neuron is 

associated with the digit it is the most sensitive to. This represents the class 

of the neuron. To assess network performance during the testing phase, the 

Classification Accuracy ( CA ) is computed as defined in Figure 1C . Each 

input digit is presented to the network for 350 μs and the output neuron that 

spikes the most within this time window—the most active neuron—

corresponds to the network response. If the most active neuron class 

coincides with the input digit, the digit is successfully classified (green 

spikes). Otherwise, the digit is misclassified (red spikes). The CA is calculated

https://assignbuster.com/non-linear-memristive-synaptic-dynamics-for-
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as the ratio between the number of successfully classified digits, n classified , 

and the number of input digits, n input (bottom of Figure 1C ). As there are 

multiple ways to hand-write the same digit, increasing the number of output 

neurons allows for an improvement of network performance as 

demonstrated in Querlioz et al. (2015) . Indeed, this enables the network to 

have at its disposal several neurons specialized to different hand-writings of 

the same digit. As shown in Querlioz et al. (2015) , the increase of CA with 

the number of output neurons saturates after 500 output neurons. 

It is worth pointing out that the network architecture and operation are 

implemented according to the real hardware possibilities of the current 

CMOS and memristive technologies. In particular, contrary to Querlioz et al. 

(2015) who implemented the same network as the present one, 

homeostasis, which, e. g., adjusts each individual output neuron threshold on

the basis on its instantaneous firing rate, is not included. As a matter of fact, 

Querlioz et al. (2015) shows that homeostasis can improve the classification 

accuracy by about 10%. On the other hand, the hardware implementation of 

homeostasis would require memory banks to store each individual neuron 

threshold values and one additional capacitor per neuron to probe each 

neuron firing rate, which will have a prohibitive impact on the required 

silicon real estate ( Dalgaty et al., 2019 ). Some pioneering works are trying 

to address this issue with the help of memristive technology ( Dalgaty et al., 

2019 ), but a hardware-compatible homeostatic process over a large number

of neurons has not been elaborated yet. 

https://assignbuster.com/non-linear-memristive-synaptic-dynamics-for-
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Furthermore, the classification scheme can also be improved with a voting 

procedure that takes into account the average firing rate of each neuron 

pool as in Diehl and Cook (2015) , instead of considering only the individual 

neuron that fires the most as in the present implementation. However, the 

voting procedure based on the individual neuron firing rate eases the circuit 

complexity and is only marginally influencing the network performances. 

Indeed, Querlioz et al. (2015) obtained a classification accuracy (94. 5%) 

very close to that of Diehl et al. (95%). 

2. 2. Models for Memristive Dynamics 
The synaptic dynamics corresponds to the evolution of the weight of an 

artificial synapse (proportional to the memristive device conductance) when 

subjected to a train of identical pulses. Considering bipolar memristive 

synapses, trains of pulses of a given voltage polarity can lead to weight 

potentiation and trains of pulses with the opposite polarity lead to weight 

depression. As evident from the recent literature ( Fumarola et al., 2018 ) 

and pointed out by part of the present authors in Frascaroli et al. (2018) , the

more general memristive conductance dynamics usually follows a non-linear 

evolution with a slow approach to the maximum and minimum values. Such 

dynamics can be described by a non-linear soft-bound (NL-SB) model, which 

has a particular importance in the field of computational neuroscience. 

Indeed, Fusi and Abbott (2007) demonstrated that NL-SB synapses generally 

endow a SNN with a larger memory capacity (capacity of storage of 

memories) compared to synapses whose weight evolve linearly between two

boundary values. This latter synaptic model will be referred to as linear hard-

bound (L-HB) synapses in the following. Fusi and Abbott (2007) showed that 

https://assignbuster.com/non-linear-memristive-synaptic-dynamics-for-
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L-HB synapses perform better than NL-SB ones only in the particular case of 

a balanced network, i. e., a network in which the rate of potentiation is the 

same as the rate of depression events. From an experimental point of view, 

a memristive dynamics is usually approximated with a L-HB dynamics by 

interrupting a NL-SB one after a certain number of pulses at the cost of 

reduced conductance window, G m a x / G m i n . Examples of experimental 

reports can be found in Jang et al. (2015) , Wang et al. (2016) , and 

Bousoulas et al. (2017) . A third generic case, which we will call non-linear 

hard-bound (NL-HB), consists in a non-linear dynamics interrupted at 

arbitrary boundary values. The boundary values are strictly reached after a 

certain finite number of consecutive weight increase or decrease events. As 

already mentioned, the NL-SB case is different because the weight 

boundaries are reached as asymptotic values after an infinite number of 

pulses (from a experimental point of view, tests up to few thousand pulses 

have been performed; Brivio et al., 2019a ). The investigated L-HB and NL-SB

dynamics in potentiation (conductance increase) and depression 

(conductance decrease) are shown in Figures 2A, B as solid and dotted lines, 

respectively. Figures 2C, D report various investigated NL-HB cases, for 

potentiation and depression operations as solid and dotted lines, 

respectively. The examples reported in Figure 2 correspond to specific 

mathematical expressions and parameterizations of the dynamics models as 

described in the following. 

FIGURE 2  

https://assignbuster.com/non-linear-memristive-synaptic-dynamics-for-
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Investigated dynamics:(A)Linear Hard-Bound (L-HB);(B)Non-Linear Soft-

Bound (NL-SB) and(C, D)Non-Linear Hard-Bound (NL-HB). Dynamics are 

plotted as a function of the number of pulses for potentiation and depression

operations (straight and dotted lines, respectively). The various dynamics 

cases are defined in Table 1 . 

Formally, the weight dynamics can be expressed in a differential form in the 

continuous domain as a variation of the weight, dw , per pulse, dn . The 

weights are always positive because they are represented by the 

conductance value of a physical device. Furthermore, it must be pointed out 

that hard-bound cases are experimentally obtained by interrupting a generic 

soft-bound dynamics, which therefore reduces the conductance window of 

hard-bound cases. Despite this fact, all the dynamics cases are simulated 

with the same conductance window considering the weight as the 

normalized version of the conductance between [0, 1], as plotted in Figure 2

. Therefore, for all the following equations one should consider w ∈ [0, 1] and

d w ± d n = 0 outside the interval [0, 1]. In particular, the L-HB dynamics is 

given by 

d w ± d n = ± α ± , ( 1 ) 

with α ± ∈ (0, 1] and where the (·) + and the (·) − stand for potentiation and 

depression, respectively. Following Fusi and Abbott (2007) , Frascaroli et al. 

(2018) , and Brivio et al. (2019a) , the NL-SB equation is given by 

{ d w + d n = α + ( 1 − w ) γ + d w − d n = − α − w γ − ( 2 ) 

https://assignbuster.com/non-linear-memristive-synaptic-dynamics-for-
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with α ± ∈ (0, 1] and γ ± ≥1. It is evident from Equation (2) that the weight 

variation tends to nullify as w approaches the boundary values. The NL-HB 

dynamics is the truncated version of the NL-SB properly re-scaled between 0 

and 1, as follows 

{ d w + d n = α + w s t o p , + ( 1 − w · w s t o p , + ) γ + d w − d n = − α −

w s t o p , − ( w · w s t o p , − + 1 − w s t o p , − ) γ − , ( 3 ) 

where α ± ∈ (0, 1], γ ± ∈ [1, +∞). N stop , ± are the values of n at which the 

corresponding NL-SB dynamics is truncated to get a NL-HB one. w stop , ± are 

the normalization terms that depend on the value of N stop , ± , as shown in 

the Supplementary Material . 

It is worth making some additional clarifications. Each dynamics case is 

described by one or more free parameters which are chosen as described in 

the following. It is clear from Equations (1) and (2) that α ± is the step height 

when departing from the boundary value for the L-HB and the NL-SB 

dynamics. Indeed, the weight moves away from the lower boundary value, w

= 0 for potentiation (resp. higher boundary value, w = 1 for depression) with 

a weight change equal to α + (resp. −α − ). For the NL-HB case, the first step 

height is α ± / w s t o p , ± . In addition, the weight change step is constant 

throughout the entire weight range for the L-HB case; it decreases from α to 

0 for the NL-SB case; and it decreases from α ± / w s t o p , ± to a finite 

value greater than 0 for the NL-HB case. The parameter γ ± introduces an 

additional non-linearity factor, whose effect can be appreciated from Figure 

2B . For each dynamics case, potentiation and depression evolution are 

considered identical, i. e., with the same values of the free parameters, α + =
https://assignbuster.com/non-linear-memristive-synaptic-dynamics-for-
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α − , γ + = γ − , and N stop , + = N stop , − . As a consequence, the pace of 

approaching and departing to and from a given weight value is the same 

only for linear synapses. On the contrary, non-linear synapses are 

characterized by a certain asymmetry between potentiation and depression. 

For instance, a NL-SB synapse can be potentiated with a significant rate 

away from a weight value close to 0 ( w ≈0). In turn, at the same value, the 

depression rate is close to 0 because d w - / d n = - α - w γ - ≈ 0 . As a 

matter of fact, the asymmetry between potentiation and depression 

dynamics is usually present in real devices ( Lee et al., 2015 ; Frascaroli et 

al., 2018 ). The impact of asymmetry between potentiation and depression 

dynamics on the performances of a neuromorphic system has been 

investigated in some detail for networks trained through back-propagation of

the error ( Chen et al., 2015 ; Agarwal et al., 2016 ; Fumarola et al., 2018 ) 

and only partially in spiking networks ( La Barbera et al., 2018 ). However, a 

procedure to decouple the effect of asymmetry from that of non-linearity has

not been proposed yet. 

The memristive evolution in the network is determined by the STDP rule 

described in the previous section and the Equations (1)–(3). In fact, when the

pre- and post-spikes are emitted according to the potentiation (depression) 

window in Figure 1B , a potentiation (depression) pulse is delivered to the 

memristive synapse driving a weight change equal to δ w + (δ w − ). The 

quantity δ w ± is determined by the current synaptic weight w and by the 

dynamics parameters in Table 1 according to Equations (1)–(3). The 

programming of memristive device with CMOS neuron circuit, in STDP-based 

schemes, has been investigated in a number of works, which highlighted the 
https://assignbuster.com/non-linear-memristive-synaptic-dynamics-for-
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need to include compact interface electronics. Pedretti et al. (2017) 

demonstrated STDP protocols on real 1 transistor-1 memristor structures 

based on the temporal overlapping on pre- and post-synaptic pulses driven 

by microcontrollers. Mostafa et al. (2016) designed a memristor/CMOS 

neuron interface constituted by 4 CMOS transistors to drive weight 

depression and potentiation operations separately within the framework of a 

generalized version of STDP. Covi et al. (2018) tested the same structure by 

wire-connecting a single memristor to two 350 nm technology CMOS 

neurons. The neurons delivered the correct programming pulses to obtain 

both analoge and digital memristive responses. In Brivio et al. (2019a) , a 6 

transistor-1 memristor structure is proposed to control synaptic potentiation,

depression, and read operations in an implementation of a generalized 

version of STDP. The system-level simulation implemented in the present 

work are compatible with such implementation details. 

TABLE 1  

List of the investigated dynamics defined by the values of their parameters 

α, γ, and N stop . 

The main weighting property of a synapse is its resolution, i. e., the number 

of weight values that it can store. The resolution of a synapse has a direct 

impact on the performances of a network ( Bill et al., 2014 ; Brivio et al., 

2019a ). However, while the definition of number of levels is straightforward 

for L-HB dynamics, the same does not hold true in the case of non-linear 

weight evolution, because in this case the weight values are not evenly 
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spaced. As a matter of principle, for NL-HB case, the resolution could be 

evaluated equal to the number of update events that are necessary to bring 

the weight from one boundary value (e. g., 0) to the opposite (i. e., 1), i. e., 

exactly N stop . However, this is not a proper definition because the weight 

can be driven from 0 to 1 with the same number of steps but through various

and very different trails. In particular, Figure 2C reports three NL-HB cases 

for which the same number of pulses is required to cover the full weight 

range but show very different dynamics. It is reasonable to associate 

different resolutions (or effective number of levels) to the three examples. In 

addition, it is worth pointing out that the number of pulses required to cover 

the full weight range is not a good definition for the NL-SB, which strictly 

requires an infinite number of steps to reach the boundary values. Indeed, 

the non-linear cases reported in Figure 2 should be associated to different 

resolutions from a purely mathematical point of view. These considerations 

are completely independent from the effect of the noise and variability that 

unavoidably affect any real memristive device ( Yu et al., 2013 ; Frascaroli et

al., 2015 , 2018 ; Covi et al., 2016 ; Brivio et al., 2017 , 2019b ). The impact 

of noise and variability has been investigated for some specific networks and

some applications, demonstrating a general tolerance of neuromorphic 

systems against memristive synapse variability and noise ( Querlioz et al., 

2013 ; Garbin et al., 2014 ; Burr et al., 2015 ; Covi et al., 2016 ; Bocquet et 

al., 2018 ). Since we want to restrict the present study to a purely theoretical

basis on the very impact of synaptic dynamics on network performances, the

effect of noise and variability are left to a future work. 
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For the reasons above, we arbitrarily define an estimator for the resolution 

(effective number of levels) of the memristive device which can be applied to

any generic dynamics expressed as a weight variation ( dw ) per pulse ( dn ) 

in the continuous domain, d w ± d n = f ± ( w ) [ f ± ( w ) must be 

differentiable for w ∈ (0, 1)]. The resolution, η, is defined as 

η = { ∫ 0 + ∞ [ d w d n ] 2 d n } − 1 . ( 4 ) 

Equation (4) returns the correct number of levels for the trivial L-HB case, i. 

e., equal to the number of pulses to go from one boundary to the other one, 

and a reasonable estimate for the non-linear cases, as discussed in the 

Supplementary Material . η assumes analytical expressions for the dynamics 

cases under study, as reported in the Supplementary Material . It is just 

worth noticing that η = 1 / α ± for the L-HB case and is proportional to 1 / α 

± for the NL-SB (in agreement with Fusi and Abbott, 2007 ) and the NL-HB 

cases. 

According to the discussion above and to the recent literature, a second 

property of weight dynamics is its non-linearity (λ), which can be defined as 

the average curvature of the weight evolution as a function of the number of 

potentiation or depression pulses, w ( n ): 

λ = 4 π ∫ 0 + ∞ | w ″ ( n ) | { 1 + [ w ′ ( n ) ] 2 } 3 / 2 d n , ( 5 ) 

where (·)′ and (·)″ indicate the first and the second derivative with respect to 

n . 
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In this work, we investigate the impact of these synaptic properties, namely 

the resolution, η, and the non-linearity, λ, on the training and performance of

the SNN described above. In particular, we consider various L-HB, NL-SB, and

NL-HB dynamics, as reported in the Table 1 and shown in Figure 2 . Note that

the L-HB cases are only characterized by different values of the resolution, 

because only one free parameter exists. For the NL-SB case, it is possible to 

investigate different dynamics for the same resolution, i. e., with different 

non-linearities. NL-HB cases are chosen in a way to have the same N stop , ± 

(cases 1–3) or the same resolution, η (cases 4–6). We investigate resolution 

values up to 500 because this is the one that guarantees good performance 

on MNIST classification on the linear case, according to previous literature 

results ( La Barbera et al., 2018 ; Brivio et al., 2019a ) and as it will be 

evident also in the following. The free parameters of the various dynamics 

cases are generally compatible with experimental data as in Frascaroli et al. 

(2018) and Brivio and Menzel (2020) . For the sake of completeness, it is 

worth noticing that dynamics of a memristive device depends on the 

properties of the constitutive materials and on the programming conditions. 

For instance, memristors featuring double insulating layers have been 

reported to show more gradual conductance evolution than devices with a 

single insulating material ( Park et al., 2016 ; Wang et al., 2016 ; Moon et al.,

2018 ; Brivio and Menzel, 2020 ). The response speed might depend on the 

diffusivity of the mobile ionic species as well. It is a property of the insulating

materials itself, which can also be slightly tuned by doping, strain, or by 

changing the atomic structure and porosity ( Azghadi et al., 2020 ; Brivio and

Menzel, 2020 ). Furthermore, the programming scheme influences the 
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dynamics. Indeed, strong programming conditions (high voltage or long 

pulses) result in large conductance changes with a few pulses ( Frascaroli et 

al., 2018 ). It is worth specifying that all the parameters (α, γ, N stop ) 

defining the memristive dynamics affect both resolution and non-linearity at 

the same time. More details can be found in the Supplementary Material . 

3. Results 
As discussed in the previous paragraph, the mathematical formulation of all 

the investigated dynamics comprises a parameter α, the only parameter that

is present in all investigated synaptic dynamics. In Figure 3 , the 

classification accuracy, CA , is shown to decrease as a function of α for the 

investigated cases. This observation is expected because 1 / α is equal to the

synaptic resolution of the L-HB dynamics and is proportional to that of the 

non-linear ones. It is already evident that the non-linear cases perform better

than the linear ones for a wide range of the parameter α, in agreement with 

previous publications ( La Barbera et al., 2018 ; Brivio et al., 2019a ). 

However, only the evolution as a function of α does not catch the entire 

complexity of the problem because, for the NL-SB and NL-HB cases, α affects

both resolution and non-linearity. Indeed, the various types of weight 

dynamics in Figure 3 follow a different decreasing trend. The maximum 

reached classification accuracy settles close to 85%, which is lower than the 

best results on theoretical SNNs ( Diehl and Cook, 2015 ). However, as stated

above, the aim of the present work is to test SNNs constituents and 

architectures that can be possibly realized in hybrid CMOS/memristor 

technology ( Valentian et al., 2019 ; Regev et al., 2020 ). As discussed in the 

Methods section, the inclusion of a homeostatic rule, which is of difficult 
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hardware implementation, would recover a classification accuracy close to 

the best state of the art results, as demonstrated by Querlioz et al. (2015) 

with the same network as the one implemented in this work. The values of 

the collected classification accuracy are reported in the Supplementary 

Material . 

FIGURE 3  

Classification accuracy as a function of the parameter α for the L-HB, NL-SB, 

and NL-HB cases. 

To get a deeper insight on the factors affecting the network performances, 

the classification accuracy is plotted as a function of η and λ in Figure 4 , 

which reports the first of the main results of the paper taking advantage of 

the mathematical toolkit described in the previous section. Figure 4A shows 

that there is a general trend of increasing CA with the synaptic resolution, η. 

Different resolution values are shown for the dynamics with hard-bounds, 

linear (squares) and non-linear (triangles), i. e., L-HB and NL-HB. They show a

very similar trend with slightly higher CA for the non-linear case. The 

investigated NL-SB dynamics (circles) share the same resolution (η = 500) 

but they give different CA results. In particular, for the NL-SB, the CA is 

reduced by the increase of non-linearity, λ, as shown in Figure 4B . In turn, 

the non-linearity does not affect significantly the performances of the non-

linear synapses with hard bounds, for which the CA remains almost stable 

over a wide range of λ values. It is important to point out that NL-HB 

synapses with the highest non-linearity λ = 0. 047 are also characterized by 
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the lowest resolution η = 90 (please consider that the symbol color is 

indicative of the synaptic resolution η, according to the color reported on the

right-hand side of the figure). In any case, both the low resolution and the 

high non-linearity affect the classification performance only by a small 

amount. In addition, it is worthless to notice that the L-HB synapses are all 

described by zero non-linearity (λ = 0). 

FIGURE 4  

Classification accuracy as a function of the parameters η(A)and λ(B), for the 

L-HB, NL-SB, and NL-HB cases. The symbols color follow the resolution value,

η, according to the color bars reported on the right sides of the panels. 

In order to understand the previous results we monitor the learning 

dynamics, i. e., the CA as a function of the training time (i. e., number of 

training digits), which usually displays a growth and a saturation toward the 

final maximum value. The learning dynamics for all the investigated synaptic

models are reported in Figure 5 (circles, left axis). With training, the synaptic

weights evolve in a way that enables the distinction between the digits. In 

particular, it is well known that linear synapses, i. e., characterized by 

weight-independent plasticity, tend to develop bi-modal weight distributions 

after training ( Song et al., 2000 ; van Rossum et al., 2000 ; Rubin et al., 

2001 ; Billings and van Rossum, 2009 ). In this case, the weight values 

accumulate at the edges of the useful weight range, i. e., [0, 1] in the 

present case. On the contrary, non-linear synapses with weight-dependent 

plasticity tend to result in a uni-modal weight distribution, with weight values
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accumulating in a value somewhere in the middle of the allowed weight 

range ( Song et al., 2000 ; van Rossum et al., 2000 ; Rubin et al., 2001 ; 

Morrison et al., 2008 ; Billings and van Rossum, 2009 ; Brivio et al., 2019a ). 

This is the result of the fact that strong (weak) synapses with non-linear 

dynamics are weakly potentiated (weakly depressed), which was shown to 

improve the memory capacity of the network on one side and, on the other, 

limit the synaptic specialization of the classification layer ( Fusi and Abbott, 

2007 ; Brivio et al., 2019a ). As a matter of fact, in general, weight-

dependent synapses and uni-modal distributions are considered less 

informative ( Hennequin et al., 2010 ), because they correspond to a lower 

degree of specialization than weight-independent synapses and bi-modal 

distributions. Conversely, uni-modal distributions are considered more 

biologically realistic ( Morrison et al., 2008 ). The weight distributions of the 

investigated cases at the end of the training are reported for the sake of 

completeness in the Supplementary Figure 2 . In order to monitor the 

development of a weight specialization that enables the network to classify 

the input images, we analyze the clustering of the weights into two groups 

as a function of training through the k-means algorithm and consider the 

distance between the centers of the two clusters as a measure of the 

network specialization, which we will call weight contrast. Indeed, intuitively 

the weight contrast can be considered as the ability to take advantage of a 

wide portion of the available weight range. Other methods to group the 

weight values into two clusters are analyzed in the Supplementary Material 

and are in agreement with the k-means algorithm results. The weight 

contrast is reported in Figure 5 (squares, right axis) for the various dynamics 
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cases. It is possible to notice that the linear cases develop a large weight 

contrast at the end of training ( Figures 5A, B ) in agreement with the 

general discussion above. The non-linear cases show lower weight contrast 

than the linear cases but with significant variations depending on the 

dynamics parameters (for instance, cf. Figures 5J, L for two different NL-HB 

cases). The weight contrast at the end of the training is plotted against the 

parameters η and λ in Figures 6A, B , respectively. Figure 6A shows that the 

L-HB case results in about the same contrast for every resolution, while in 

the NL-SB case the same synaptic resolution can give very different weight 

contrasts, depending on the non-linearity, λ ( Figure 6B ). The NL-HB case is 

the most interesting, because the additional parameter N stop allows to 

increase the contrast either by reducing the resolution, as shown by the 

filled triangles in Figure 6A , or by reducing the non-linearity at equal 

resolution, as shown by the empty triangles in Figure 6B . Finally, Figure 6C 

reports the CA as a function of the weight contrast. It shows that L-HB 

synapses (squares) are all characterized by high contrast but only those with

high resolution achieve high classification accuracy (please notice, again, 

that the symbol color is indicative of the synaptic resolution η, according to 

the color reported on the right-side of the figure). NL-SB synapses (circles) 

achieve high CA only when the weight dynamics develops a high contrast. 

This is obtained by reducing the non-linearity (please compare with Figure 

6B ). The classification results of the NL-HB synapses (triangles) are almost 

independent from the weight contrast obtained at the end of the training. 

FIGURE 5  
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Classification Accuracy ( CA , left axis) and weight contrast (right axis, as 

defined in the main text) as a function of the number of training images 

presented to the SNN for various dynamics in the different panels. 

FIGURE 6  

(A, B)Weight contrast at the end of the training as a function of the 

parameters η and λ, for the L-HB, NL-SB, and NL-HB cases.(C)Classification 

accuracy, CA , as a function of the weight contrast. The symbols color follow 

the resolution value, η, according to the color bar reported on the right side 

of panel. 

The results of Figures 4 , 6 constitute already a relevant result with respect 

to the state of the art. Indeed, linear synaptic dynamics is often considered 

as the best solution for any kind of hardware neural network, so that large 

efforts are spent to improve linearity of memristor dynamics ( Wang et al., 

2016 ; Bousoulas et al., 2017 ; Chen et al., 2019 ). Such belief may have 

raised as a generalization of the results of exemplary works on NN 

accelerators trained by back propagation of the error generalized to other 

networks and other training protocols ( Burr et al., 2015 ; Fumarola et al., 

2018 ). As a matter of fact, as mentioned above and shown in Figure 6B , 

linearity improves weight contrast and sustains the specialization of the 

network. However, it has been demonstrated that non-linear synapses 

improve memory lifetime and memory capacity of a network in which the 

rates of potentiation and depression events are not perfectly balanced ( Fusi 

and Abbott, 2007 ). Furthermore, van Rossum et al. (2000) pointed out that 
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STDP tends to make potentiated synapses more and more potentiated. 

Indeed, as a synapse is strengthened, its correlation with the post-synaptic 

neurons increases thus leading to a further potentiation. Van Rossum et al. 

demonstrated that this destabilizing tendency of STDP can be profitably 

counterbalanced by introducing weight-dependent plasticity (i. e., a non-

linear dynamics) which produces a certain competition among synapses. The

results in Figures 4 , 6 can be generically ascribed to a different balance 

between contrast decrease, increase of memory lifetime, and synaptic 

competition with increasing non-linearity. 

This result marks a difference with respect to memristor-based neural 

network accelerators trained by global error back-propagation for which the 

achievement of high weight contrast and bi-modal weight distribution taking 

advantage of the full weight range is fundamental for a successful training (

Sidler et al., 2016 ; Fumarola et al., 2018 ). 

Another important aspect to consider is the duration of the training process, 

which for some applications must be reduced to a minimum. To evaluate it, 

we define the parameter Δ train as the fraction of training images required to 

reach 99% of the final classification accuracy over the total number of digits 

available for training, n tot (with n tot = 60, 000 here). In symbols, 

Δ t r a i n = n t r a i n ( C A = 99 % C A m a x ) n t o t , ( 6 ) 

The parameter Δ train is shown as a function of η and λ in Figures 7A, B , 

respectively. Figure 7A indicates a correlation between the synapse 

resolution and Δ train . The correlation is somehow expected in case of a 
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strong tendency to the formation of a bi-modal weight distribution, i. e., 

linear synapses (squares). Indeed, if the weight values tend to concentrate at

the boundary values, the number of steps required to move the weight 

values from a generic initial one to the boundary scales with the synapse 

resolution. In agreement with this interpretation, the correlation between Δ 

train and η is not perfect for the non-linear cases, because for the same 

resolution very different Δ train values are obtained, as shown in Figure 7A in 

particular for the NL-SB cases (filled circles). Interestingly, the evolution of Δ 

train as a function of λ follows opposite trends for soft and hard bound cases 

(also considering only the points at equal resolution, empty triangles and 

filled circles), as visible in Figure 7B . It is worth noticing that NL-SB and NL-

HB with 500 levels resolution also show the same evolution of contrast as a 

function of non-linearity, as shown by filled circles and empty triangles in 

Figure 6B . Therefore, the opposite trends of Δ train as a function of non-

linearity cannot be explained by the need to develop, during training, a 

weight contrast that scales differently with non-linearity for NL-SB and NL-HB

dynamics. On the contrary, the classification accuracy of NL-SB and NL-HB 

dynamics with the same 500 levels resolution follows opposite trends as a 

function of non-linearity, as indicated in Figure 4B (though the change for the

NL-HB case is very modest). Therefore, the fact that both accuracy and 

training time follow opposite trends as a function of non-linearity can be an 

indication that, for non-linear dynamics, the training time is influenced by the

maximum classification accuracy allowed by the particular synaptic 

dynamics. Finally, also considering the training time, the NL-HB cases 

(triangles) demonstrate more versatility than the other dynamics in reducing
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the training duration either by reducing the resolution, η ( Figure 7A ), or 

increasing the non-linearity, λ ( Figure 7B ). 

FIGURE 7  

Training duration, N train , as a function of the parameter η(A)and λ(B), for 

the L-HB, NL-SB, and NL-HB cases. The symbols colors in follow the 

classification accuracy, CA, in(A)and the resolution value, η, in(B)according 

to the color bars reported on the right sides of the panels. 

All the results are summarized in Figure 8 . Figure 8A reports the 

classification accuracy as a function of the training duration, Δ train , for the 

various dynamics. The usual increase of CA with η is evident for the L-HB 

case, demonstrating that an increase in synaptic resolution produces a 

higher classification accuracy at the expense of longer training duration. This

fact can be appreciated reminding that the symbol color follows the 

resolution, η, in agreement with the color bar on the right-hand side of the 

Figure 8 . The saturation visible at high Δ train may be just due to the fact 

that, during training, further CA increase takes longer and longer time. In 

Figure 8A , no general trend can be appreciated for NL-SB and NL-HB 

synapses. For instance, some NL-SB cases present long training times 

associated to a degraded CA as a consequence of the effect of the non-

linearity, according to Figures 4 , 7 . In addition, for the NL-HB cases, the CA 

shows a limited dependence on Δ train . In particular, the point corresponding 

to the lowest training duration, interestingly, guarantees almost the same 

classification performances as the points requiring a longer training. This 
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case could be considered as the one realizing the best trade-off between 

classification accuracy and required training time. As a matter of principle, 

some applications may require both to maximize the CA and to minimize Δ 

train (i. e., maximize 1−Δ train ). For this reason, we can define the SNN 

efficiency, ϵ, as 

ϵ = C A + ( 1 - Δ t r a i n ) 2 , ( 7 ) 

which is normalized between 0 and 1. ϵ values are shown in Figures 8B, C as 

a function of η and λ, respectively (all the achieved values of the 

performance metrics and a figure reporting the efficiency as a function of 

accuracy are reported in the Supplementary Material ). The maximum 

efficiency is reached by the NL-HB case with the lowest resolution and the 

highest non-linearity (top- and left-most triangle in Figure 8B and top- and 

right-most triangle in Figure 8C , with η = 90 and λ = 0. 047). It corresponds 

to the dynamics with α = 0. 03 in Figure 2C , which grants a classification 

accuracy that is only slightly affected by resolution and non-linearity, as 

shown in Figure 4 . Such highly non-linear and highly weight-dependent NL-

HB dynamics resembles a NL-SB one and may endow the network with 

longer memory lifetime ( Fusi and Abbott, 2007 ) and a higher synaptic 

competition within a STDP training framework ( van Rossum et al., 2000 ), 

resulting in an improved synaptic contrast (right-most filled triangle in Figure

6C ). Furthermore, the maximum efficiency dynamics takes advantage of a 

short training time justified by its low resolution, as shown in Figure 7A . In 

turn, for the L-HB cases (squares), the efficiency is degraded with increasing 

resolution as a consequence of the increase of the training duration, as 
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shown in Figure 7A . The non-linearity, instead, deteriorates the efficiency of 

the NL-SB dynamics (circles in Figure 7C ) because it both increases the 

training duration ( Figure 7B ) and reduces the classification accuracy (

Figure 7 ). 

FIGURE 8  

(A)Classification accuracy, CA , as a function of the training duration, Δ train , 

for the various dynamics.(B)Efficiency as a function of the resolution, η, 

and(C)efficiency as a function of the non-linearity, λ. The symbols colors 

follow the resolution value, η, according to the color bars reported on the 

right sides of the panels. 

4. Conclusions 
In conclusion, we analyzed the impact of the synaptic weight dynamics on 

the performances of a two-layer fully-connected SNN compatible with a 

hybrid CMOS/memristive implementation and trained through an 

unsupervised STDP protocol. We chose weight dynamics that can be 

realized, at least as a matter of principle, through memristive technology. 

We found that synapses with non-linear dynamics and hard weight boundary 

values (NL-HB synapses) give performance advantages for a SNN with STDP-

based learning in various aspects. First, NL-HB synapses guarantee the best 

classification accuracy among the investigated dynamics (see Figures 3 , 4 , 

8A ) over all the investigated range of resolution, η. It is worth noticing that 

this is a significant result in the context of the present literature. Indeed, it 

has been extensively demonstrated in several publications ( Chen et al., 
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2015 ; Ambrogio et al., 2018 ; Fumarola et al., 2018 ; Moon et al., 2018 ) that

linear synapses enable the best classification accuracy of neuromorphic 

systems that implement in hardware the back-propagation of the global 

error. This result has been extended, as a supposedly natural consequence, 

as holding true for SNNs. However, few recent works from the present 

authors ( La Barbera et al., 2018 ; Brivio et al., 2019a ) have given 

indications that non-linear synapses can perform better than linear ones for 

SNNs, which resulted in an interesting debate ( Berg et al., 2019 ). In the 

present work, we put on firmer and quantitative basis the role of non-

linearity on the performances of unsupervised and STDP-based SNNs. 

Furthermore, for applications in which the training duration has to be 

minimized, the NL-HB dynamics also realized the best trade-off between 

classification accuracy and training duration, in agreement with the 

mathematical definition of efficiency given above (see Figure 8 ). 

All these results are ascribed to the fact that the NL-HB dynamics produces a

distinct behavior of the SNN, with respect to L-HB and NL-SB dynamics. 

Indeed, in case of hard-bounds, the classification accuracy and the weight 

contrast (ability to take advantage of a wide portion of the available weight 

range) is minimally affected by the non-linearity (compare NL-SB and NL-HB 

cases in Figures 4 , 6 ). Moreover, the non-linearity of NL-HB synapses tends 

to reduce SNN training duration, in clear opposition with the trend of the 

soft-bound synapses ( Figure 7B ). This is the reason for the low training 

duration for the highly non-linear hard bound synapses, which results in a 

high efficiency, ϵ, according to the definition above ( Figure 8 ). 
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In addition, it is interesting to make some considerations from a 

technological point of view. Memristive devices are characterized by an 

intrinsic non-linear conductance dynamics. More precisely, we have recently 

shown that the NL-SB dynamics is the model that faithfully describes the 

behavior of filamentary memristive devices ( Frascaroli et al., 2018 ; Brivio et

al., 2019a ). On the other hand, technological efforts have been mainly 

focused on developing memristive synaptic devices with high resolution and 

low non-linearity because these are the requirement for hardware neural 

networks relying on back-propagation of the error. The linear dynamics is 

usually obtained by truncating the non-linear dynamics in the linear regime. 

This solution however limits the synapse resolution to a lower values with 

respect to those that can be obtained with a more complete non-linear 

dynamics. In fact, in the present study, the dynamics free parameters have 

been set to realistic values in particular for the non-linear cases. On the 

contrary, resolutions of 200 and 500 levels can hardly be obtained over a 

linear conductance evolution ( Wang et al., 2016 ; Bousoulas et al., 2017 ; 

Chen et al., 2019 ). For instance, in one of the best literature results, Wang 

et al. (2016) reports a nearly linear dynamics over 300 pulses, indicating a 

resolution close to 300 levels. However, their data is best fitted with a NL-HB 

models with α = 0. 004, γ = 1. 02 and a resolution of about 266 levels. 

Therefore, according to our results, in the case of SNNs with STDP-based 

unsupervised training, higher classification accuracy values, or efficiency 

values, can be obtained with non-linear hard-bound synapses relaxing the 

requirements on resolution and non-linearity for memristive devices. 

Therefore, high performances for STDP-based SNNs can be obtained with 
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moderately challenging device engineering by embracing, instead of facing, 

their intrinsic non-linear dynamics. It is worth specifying that simulations 

have intentionally been performed neglecting any source of variability in the 

synaptic elements in order to isolate the very effect of synaptic dynamics. 

From an experimental point of view, the various dynamics may be affected 

more or less seriously by noise and variability. In particular, we can expect 

the linear dynamics, being the most challenging in real devices as stated 

above, to be the most affected by noise and variability. However, a 

methodological experimental investigation on highly optimized devices is 

required in order to take into account the different role of dynamics-

dependent variability in the simulations. 

Finally, the present paper defines a methodology to assess the impact of 

synaptic dynamics on the performances of a neural network and provides 

the basis for future works applied to different training protocols, network 

architectures, applications, and different synaptic dynamics features, e. g., 

asymmetry between weight depression and potentiation processes and 

potentially different dynamics evolution, size of the readout layer and, as 

mentioned above, the impact of dynamics-specific noise and variability 

features, all of which can have an impact on the trade-offs pointed out in the 

manuscript. 
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