Phytochemistry, pharmacology and medicinal uses of plants of the genus : an updat...

Health & Medicine

Introduction

Salicaceae (the Willow and Poplar family) traditionally includes the genera *Populus* (poplar) and *Salix* (willow), which are common in Northern temperate regions, and are amentiferous (bearing catkins) (<u>Isebrands and</u> <u>Richardson, 2014</u>). Presently, the Salicaceae have been enlarged to contain most tropical members of Flacourtiaceae, which do not produce catkin (<u>Thadeo et al., 2014</u>). Thus, the family Salicaceae now comprises about 56 genera and 1, 220 species (<u>Christenhusz and Byng, 2016</u>).

The members of Salicaceae are fast growing trees or shrubs (<u>Isebrands and</u> <u>Richardson, 2014</u>). They are used for many economic purposes as production of timber, paper, fences, shelter, snowshoes, arrow shafts, fish traps, whistles, nets, rope, as a biomass fuel (a source of renewable energy), for ornamental, architectural and horticulture uses. Also, they are used for environmental enhancement through soil erosion control (<u>Kuzovkina and</u> <u>Vietto, 2014</u>). Willow twigs are elastic and were used to interweave baskets, for caning, and to manufacture woven fences and other lattices (<u>Isebrands</u> <u>and Richardson, 2014</u>).

The genus *Salix* (the willow) includes 330–500 species and more than 200 hybrids (<u>Isebrands and Richardson, 2014</u>), which are most widely distributed in the Northern hemisphere with a limited number of species occur in the Southern hemisphere (<u>Zhen-Fu, 1987</u>). *Salix* species are widely distributed in Africa, North America, Europe, and Asia (<u>Argus, 2007</u>). *Salix* species are fast growing trees, shrubs or prostrate plants; they can withstand a wide range of different weathers more than *Populus* species, as

they grow in temperate, subtropic and tropic regions (<u>lsebrands and</u> <u>Richardson, 2014</u>).

Taxonomy

General morphological characters of genus Salix were reported (Argus, 2006) ; Lauron-Moreau, et al., 2015). Willows are 6–10 m high trees or shrubs with spirally arranged, sometimes silvery, oblong leaves. The latter is commonly hairy on the underside and often turn black when drying. Leaves are simple, petiolate showing different shapes of lamina (oblong, linear, ovate, obovate or round), stipulate with linear to rounded stipules and with entire, serrate or dentate margin. Their arrangement is mostly alternate or rarely opposite (Lauron-Moreau, et al., 2015). The flowers are catkins, dioecious, with nectaries (glands) instead of perianth and they have bracts, which are pale or black, pubescent or glabrate, constant in male flowers and deciduous in female ones. The flowers blossom in spring, generally prior the leaves (Mabberley 2008). The male catkins have mostly two stamens, more prominent yellow, with few species having 3-12 stamens while the female catkins are greenish, have single pistil with single ovary, style, two-lobed stigma and 2 to 42 ovules per each ovary (<u>Mabberley 2008</u>). The nectar of flowering Willow is the first food source for bees in spring. The seeds are small, with limited longevity, fine hairy coat enabling their spread by wind and they germinate after few days of exposure to moistured surfaces (Mabberley 2008). Recently, the taxonomy of neotropical Salicaceae (formerly Flacourtiaceae) is difficult, as they show very different morphology and exhibit numerous characteristics in common with several other families. The neotropical Salicaceae and Salicaceae displayed similar characters such

as the presence of salicoid leaf teeth, collateral and arch-shaped vascular system at the midrib, abundance of crystals, brachyparacytic stomata, secondary growth of the petiole and sclerenchyma accompanying the bundles (<u>Thadeo et al., 2014</u>).

Phytochemistry

Different phytoconstituents or secondary metabolites of the genus *Salix* as flavonoids, glycosides (phenolic and non-phenolic glycosides), procyanidins, organic acids and their derivatives, simple phenolics, sterols and terpenes, lignans, volatiles and fatty acids were reported (<u>Supplementary Tables S1-</u><u>S7</u>, included in Supplementary materials). *Salix* leaves mainly contain flavonoids, phenolic acids, their derivatives, and phenolic glycosides, while stem bark mainly contains procyanidins.

Flavonoids

Salix contains a wide variety of flavonoids, which are distinctive for each species, as flavones, flavonols, flavanones, dihydroflavonols, isoflavones, chalcones, dihydrochalcones, flavan-3-ols and anthocyanins (Nasudari et al., 1972; Pobł ocka-Olech and Krauze-Shao et al., 1989; Du et al., 2004; Zeid, 2006; Jü rgenliemk et al., 2007; Baranowska, 2008; Freischmidt et al., 2010; Li et al., 2013). Data are summarized in <u>Supplementary Table S1</u> and the structures are presented in <u>Figure 1</u>.

FIGURE 1

Structures of reported flavonoids from the genus Salix.

The highest numbers of different classes of flavonoids (A-E) were detected in leaves and rarely in roots. The flavones as apigenin and its glycosides (1, 2, 4, 5) are major constituents of *S. acutifolia* Willd. leaves (<u>Shelyuto and</u> Bondarenko, 1985), S. matsudana Koidz. leaves (Han et al., 2003a) and S. babylonica L. leaves and roots (Khatoon et al., 1988; Singh et al., 2017). Whereas, chrysoeriol (6), its 7- O-D-glucoside 7) and 7- O-glucuronide 8) are major constituents of S. babylonica L. (Liu et al., 2008), S. matsudana Koidz. leaves (Han et al., 2003b) and *S. subserrata* Willd. leaves (Tawfeek et al., 2019), respectively. Compounds (12, 14) were reported in S. denticulate leav es (Rawat et al., 2009; Semwal et al., 2011). S. gilgiana Seemen. leaves were characterized by the accumulation of acylated luteolin glucosides (19–23) (<u>Mizuno et al., 1987</u>). Compounds (25, 35) are chemical markers for *S. matsudana* Koidz. leaves (Li et al., 2008). Kaempferol 32) and its 7, 4`-dimethyl derivative 33) were found to be most prominent constituents in S. bordensis Turcz. (Zhao et al., 2014). Also, kaempferol-7-*O*-glucoside 34) is a major compound in *S. babylonica* L. leaves and roots (Khatoon et al., 1988 ; Singh et al., 2017).

Angeloxyflavone 13) and isoflavones (63, 64) are chemical markers for *S. cheilophila* C. K. Schneid. twigs (<u>Shen et al., 2008</u>). *S. integra × S. suchowensis* young stem was characterized by the accumulation of sulfated flavanones and dihydroflavonol as compounds (49, 52, 58, 60). Compound 11) was reported in the erial parts of *S. denticulate* Andersson.

The highest number of chalcones, catechins, procyanidins and anthocyanins were detected in the bark of willows . The bark of *S. daphnoides* Vill. , *S.*

elbursensis Boiss. *, S. acutifolia* Willd. and *S. rubra* Huds. were characterized by the accumulation of chalcones (65-67) (Kompantsev, 1969; Kompantsev and Shinkarenko, 1975; Vinokurov, 1979; Zapesochnaya et al., 2002; Krauze-Baranowska et al., 2013). Catechin 69) and its derivatives (70, 71), epicatechin (72), procyanidin B1 77) and its derivative (78), procyanidin B3 (80) and its derivative (81), procyanidins B6 (84), B7 85) and trimeric procyanidins (87-89) were found to be major constituents of *S. sieboldiana* Blume bark (Hsu et al., 1985). Also, procyanidins (77, 79, 80, 82, 83, 85, 86, 89, 90, 92) are major constituents of *S. daphnoides* Vill. bark (Wiesneth, 2019). Anthocyanins (93-95) were detected in the bark of *S. purpurea* L., *S. daphnoides* Vill. *, S. alba* L. *, S. phylicifolia* L. *, S. nigricans* Sm. *, S. calodendron* Wimm. *and S. viminalis* L. *, S. triandra* L. and *S. amygdalina* L. (Bridle et al., 1970; Bridle et al., 1973).

Phenolic Glycosides

Glycosides are major secondary metabolites in Salicaceae (Binns et al., 1968; Kompantsev and Shinkarenko, 1973; Kompantsev et al., 1974; Nichols-Orians et al., 1992; Fernandes et al., 2009). Phenolic glycosides represent up to 30% of dry plant mass. They are classified into two main classes: Salicin derived glycosides (salicinoids) and other phenolic glycosides as glycosylated phenylpropanoids, phenylethanoids and benzenoids and glycosylated salicylic acid derivatives. Salicinoids, which are considered as taxonomic markers for genus *Salix*, are derivatives of salicin, produced by esterification of one or more hydroxyl groups of salicyl alcohol or glucose moieties, mainly 2` and/or 6' of glucose, with organic acids as acetic, benzoic and 1-hydroxy-6-oxocyclohex-2-en-1-carboxylic (HCH) acids. The phenolic glycosides isolated and/or identified from genus *Salix* are presented in <u>Supplementary Table S2</u> and <u>Figure 2</u>.

FIGURE 2

Structures of reported phenolic glycosides from genus Salix.

The highest number of phenolic glycosides were reported in *Salix* leaves, followed by twigs, stems and bark. Salicin (141), tremuloidin (164), tremulacin 166) were found to be the major constituents in *S. Acutifolia* Willd. juvenile stem and bark (Zapesochnaya et al., 2002 ; Wu et al., 2016), *S. chaenomeloides* Kimura leaves (Mizuno et al., 1991), *S. glandulosa* Seemen. twigs (Kim et al., 2015) and *S. tetrasperma* Roxb. leaves (El-Shazly et al., 2012).

Some phenolic glycosides were identified as taxonomic markers for different *Salix* species. Acmophyllin A 96) and acmophyllin B 97) identified as taxonomic marker for *S. acmophylla* Boiss. leaves (<u>Shah et al., 2016</u>). Chaenomeloidin (101), cochinchiside A (107), lasiandrin (133), leonuriside A (134), salicin-7-sulfate 152) identified as taxonomic markers for *S. chaenomeloides* Kimura leaves (<u>Mizuno et al., 1991</u>), *S. glandulosa* Seemen. twigs (<u>Kim et al., 2015</u>), *S. lasiandra* leaves and twigs (<u>Reichardt et al., 1992</u>), *S. matsudana* Koidz. leaves (<u>Li et al., 2008</u>) and *S. koriyanagi* Kimura. Stems (<u>Noleto-Dias et al., 2018</u>), respectively. Sachaliside 1 139) and sachaliside 2 (140) were identified as taxonomic markers for *S. sachalinensis* F. Schmidt (<u>Mizuno et al., 1990</u>).

Page 8

Some *Salix* species were characterized by accumulation of 1, 2cyclohexanediol glycosides. Compounds (116–128) were detected in *S. glandulosa* Seemen. twigs (<u>Kim et al., 2014</u>). Also, acutifoliside, a benzoic acid derivative 98) was a chemical marker for *S. acutifolia* Willd. juvenile stem (<u>Wu et al., 2016</u>).

Non-Phenolic Glycosides

Non-phenolic glycosides (172, 173, 174, 175, 176, 182–188) were found to be the major constituents in *S. triandra* L. *x dasyclados* Wimmer Wood (<u>Noleto-Dias et al., 2019</u>). Also, compounds (170, 171) are the major constituents in *S. arbusculoides* Andersson twigs (<u>Evans et al., 1995</u>). Some *Salix* species were characterized by accumulation of 1, 2-cyclohexanediol glycosides. Compounds (177, 180) were detected in *S. glandulosa* Seemen. twigs (<u>Kim et al., 2014</u>) and grandidentin 181) was reported in *S. purpurea* L. bark (<u>Pearl and Darling, 1970</u>) (<u>Supplementary Table S3</u> and <u>Figure 3</u>).

FIGURE 3

Structures of reported non-phenolic glycosides from genus Salix.

Organic Acids

Salix species are rich sources for phenolic acids, either in free or esterified form, as benzyl, cinnamyl or phenyl ethyl esters. The aromatic acids are either benzoic or cinnamic acid derivatives: benzoic acid derivatives as p hydroxybenzoic, p -anisic, gallic, salicylic, gentisic, vanillic, 2-amino-3methoxy benzoic and protocatechuic acids, while hydroxycinnamic acid derivatives as *p* -coumaric, caffeic, isoferuolic, and feruolic acids, (<u>Supplementary Table S4</u> and <u>Figure 4</u>).

FIGURE 4

Structures of reported organic acids from genus Salix.

The higest number of organic acids were detected in *S. purpurea* L., *S. alba* L. bark (<u>Agnolet et al., 2012</u>) which contain compounds (192–194, 198–200, 214), *S. tetrasperma* Roxb. flowers and bark (<u>Sobeh et al., 2019</u>; <u>Mostafa et al., 2020</u>) which contain compounds (197, 202, 203, 204, 205–206, 208, 209, 215).

Simple Phenolics

Genus *Salix* comprises a vast variety of simple phenolic compounds (Phenolic acids and their derivatives) (Tuberoso et al., 2011). *S. capensis* Thunb. bark (<u>Masika et al., 2005</u>), *S. acutifolia* Willd. bark (<u>Zapesochnaya</u> et al., 2002), *S. subserrata* Willd. bark (<u>Hussain et al., 2011</u>), *S. caprea* L. inflorescence (<u>Ahmed et al., 2017</u>) were characterized by the accumulation of salicyl alcohol 228) which is the basic nucleus for salicinoids. Also, *S. caprea* L. wood was characterized by the accumulation of different simple phenolics as aucuparin (218), methoxyaucuparin (219), coniferyl alcohol (221), *p*-coumaryl alcohol (222), 4, 2'-dihydroxy-3, 5-dimethoxybiphenyl 223) and sinapylaldehyde 229) (<u>Malterud and Dugstad, 1985</u>; Pohjamo et al., 2003), as illustrated in <u>Supplementary Table S5</u> and <u>Figure 5</u>.

FIGURE 5

Structures of reported simple phenolics from genus Salix.

Sterols and Terpenes

The highest number of sterols and triterpenes was detected in *S. cheilophila* C. K. Schneid. twigs (<u>Shen et al., 2008</u>), *S. tetrasperma* Roxb. bark, leaves and flowers (<u>El-Shazly et al., 2012</u>; <u>Sobeh et al., 2019</u>), *S. subserrata* Willd. leaves (<u>Balbaa et al., 1979</u>), *S. denticulate* erial parts (<u>Rawat et al., 2009</u>), *S. babylonica* L. roots (<u>Singh et al., 2017</u>), *S. subserrata* Willd. bark and leaves (<u>Hussain et al., 2011</u>). Whereas phytane and pimarane diterpene were found to be the major constituents in *S. cheilophila* C. K. Schneid. twigs (<u>Shen et al., 2008</u>), as illustrated in <u>Supplementary Table S6</u> and <u>Figure 6</u>.

FIGURE 6

Structures of reported sterols and terpenes from genus Salix.

Lignans

Sisymbrifolin a lignan derivative 247) had been isolated from the bark of *S. alba* L. (<u>Du et al., 2007</u>). Recently, pinoresinol (248), lariciresinol (249), secoisolariciresinol (250), 7-hydroxymatairesinol (251), medioresinol (252), and lariciresinol-sesquilignan 253) were detected in the biomass of five willow sp. cultivated in Quebec, Canada (<u>Brereton et al., 2017</u>) as illustrated in <u>Figure 7</u>.

FIGURE 7

Structures of reported lignans from genus Salix.

Volatiles

Terpenes (hemi-, mono- and sesqui-terpenes) and non-terpene (aliphatic, aromatic acids, their esters, carbonyl compounds and hydrocarbons) volatiles were identified in the genus *Salix*. The highest percent of volatiles and fatty acids was reported in *S. caprea* L. inflorescence (<u>Ahmed et al.,</u> 2017), and the leaves of *S. egyptiaca* L. (<u>Karimi et al., 2011</u>), *S. babylonica* L. (<u>Salem et al., 2011</u>), and *S. alba* L. (<u>Zarger et al., 2014</u>) (<u>Supplementary Table S7</u> and <u>Figure 8</u>).

FIGURE 8

Structures of reported volatiles and fatty acids from genus Salix.

Traditional Uses

Salix plants have been used medicinally since antiquity and have been linked to the discovery of acetylsalicylic acid and aspirin. These plants had been traditionally used to treat painful musculoskeletal joint pain conditions, inflammation, and fever. Salicin is a major pharmacologically active metabolite in *Salix* and hydrolyzes in the gastrointestinal tract to confer salicyl alcohol and d -glucose. The latter is oxidized, upon absorption, into salicylic acid, the active drug which inhibits cyclooxygenases (COX I, II) (<u>Mahdi, 2010</u>).

S. egyptiaca L (Musk Willow) was important in the Middle East, especially in Iran, as it has been traditionally used to treat anemia and vertigo, as a cardiotonic agent, and also in the preparation of local candies as a fragrance additive (<u>Asgarpanah, 2012</u>). *S. alba* L (white willow), had used in folk medicine to treat fever, chronic and acute inflammation, pain and infection (Zengion and Yarnell, 2011 ; Maistro et al., 2019). *S. tetrasperma* Roxb. had been used to treat diseases such as epilepsy, diabetes, fever, rheumatism, piles, swellings, stones in bladder, dysentery, wound, ear pain, cough and cold (<u>Prashith Kekuda et al., 2017</u>). *S. alba* L. bark is traditionally used for treatment of flu, rheumatism, fever and headache (<u>Van Wyk and Wink, 2018</u>).

Pharmacological Activity

Different *Salix* species and the isolated compounds as salicylic acid and salicin have been utilized in folk medicine to treat rheumatic diseases, back pain, toothache, headache, and menstrual cramps (<u>Highfield and Kemper</u>, 1999). They exert analgesic, anti-inflammatory, antioxidant, anticancer, cytotoxic, antidiabetic, antimicrobial, anti-obesity, neuroprotective and hepatoprotective activities. The main targets of salicylic acid are cyclooxygenases (COX I, II) which are key enzymes of pathway to prostaglandins which control inflammation and pain. The available scientifically based reports on biological activities of genus *Salix* are summarized in Tables 1 – 8.

TABLE 1

Anti-bacterial activity of *Salix* species.

TABLE 2

Antifungal, anthelmintic and anti-retroviral activity of *Salix* species.

TABLE 3

Invitro antioxidant activity of Salix species.

TABLE 4

In vitro antiproliferative effects of Salix species.

TABLE 5

In vivo anticancer effects of Salix species.

TABLE 6

In vivo neuroprotective effects of *Salix* species and their major constituents.

TABLE 7

In vivo hepatoprotective effects of Salix species and their major constituents.

TABLE 8

In vivo anti-obesity and anti-lipidemic effects of *Salix* species and their major constituents.

Antimicrobial Effects of Salix

Multidrug-resistant bacteria are widely spread, and natural resources have

been used as a means of discovering novel antibacterial compounds as they

offer limitless opportunities for the discovery of new agents, particularly against multidrug resistant bacteria.

The main methods used to evaluate the antimicrobial activity of *Salix* extracts are disc diffusion assays, agar well diffusion, broth microdilution methods and the assessment of antibiofilm function (<u>Masika et al., 2005</u>; <u>Fayaz and Sivakumaar, 2014</u>; <u>Popova and Kaleva, 2015</u>; <u>Mostafa et al., 2020</u>). As detailed in <u>Table 1</u>, microbial growth inhibition zones and percentages along with minimum inhibitory concentrations (MICs) displayed the potential of *Salix* species as substantial antimicrobials and predict their efficacy as functional foods (<u>Mostafa et al., 2020</u>).

Antibacterial Activity

Many previous studies evaluated the antibacterial activity of *Salix* plants and active constituents of their extracts against different types of bacteria such as *Pseudomonas eruginosa*, *Escherichia coli, Staphylococcus aureus* and *Bacillus subtilis*, dental biofilm forming bacteria (*Streptococcus mutans* and *Lactobacillus*), and *Salmonella enterica* (<u>Table 1</u>). Catechol and 2-hydroxybenzyl alcohol derived from the bark of *S. capensis* Thunb. were previously tested for their antibacterial activity. Both compounds exhibited similar antibacterial activity against *P. eruginosa* (<u>Masika et al., 2005</u>). Moreover, *Salix alba* L. bark extract demonstrated antimicrobial activity against the dental biofilm forming bacteria with MIC of 125 µg/ml. Furthermore, it also exhibited a moderate potential against the *Staphylococcus aureus* but the least activity was observed against *E. coli* (<u>Fayaz and Sivakumaar, 2014</u>). Previous studies also showed that the twigs aqueous extract with leaves of *S. babylonica* L. exhibited potent

antimicrobial properties against Gram-negative bacteria (*E. coli*, *Salmonella enterica*, MIC ₅₀ is 70. 4 ± 17 . 41 mg/ml) with a comparable activities to thiamphenicol (The broad spectrum antibiotic). Its effects cover Grampositive bacteria such as *S. aureus* (Popova and Kaleva, 2015). A recent study performed in our laboratories tested the extracts of both stem bark and flowers of *S. tetrasperma* Roxb. for anti-quorum sensing activity against *Pseudomonas eruginosa*. Both extracts inhibited *P. eruginosa* bacterial growth at 40 mg/ml; however, the bacterial viability was not affected by 1/4 and 1/8 MIC concentrations. When the extracts were tested as anti-quorum sensing agents, they impaired virulence of *P. eruginosa* by declining its swimming and swarming motilities and reducing its hemolytic and proteolytic properties (Mostafa et al., 2020).

Antifungal Activity

Poisoned food technique, broth microdilution method, filter disc assay and growth curve study methods were used to determine the antifungal properties of *Salix* extracts (<u>Table 2</u>). The antifungal activity was evaluated against *Candida guilliermondii*, *C. glabrata*, *C. parapsilosis* and *Fusarium oxysporum*.

Anthelmintic Activity

The anthelmintic potential of *Salix* species to inhibit gastrointestinal and pulmonary parasites in animals was studied. The anthelmintic activity was evaluated against *Ostertagia*, *Moniezia*, *Dictyocaulus*, *Eimeria*, *Chabertia*, *Cooperia*, and *Hemonchus contortus* (<u>Table 2</u>). It was reported *Salix babylonica* L (at dose of 20 ml, weekly) was effective against the main parasite species detected in sheep (*Eimeria* spp., *Dictyocaulus* spp., and https://assignbuster.com/phytochemistry-pharmacology-and-medicinal-usesof-plants-of-the-genus-an-updated-review/ *Chabertia* spp.) more than the most common parasites in goats in southern Mexico farms (*Dictyocaulus* spp. and *Chabertia* spp.) (<u>Salem et al., 2017</u>).

Anti -HIV Activity

Human immunodeficiency virus (HIV) infection that causes acquired immunodeficiency syndrome (AIDs) represents a major health problem worldwide. Chemical anti-retroviral agents are usually used to treat AIDs patients. However, they possess many adverse effects and resistance emerged for many of them. Recently, novel anti-retroviral agents isolated from medicinal plants, played an essential role to replace synthetic drugs. One study investigated the anti-retroviral effects of *S. egyptiaca* L. extract. Results of this study and bioinformatics analyses suggested that the plant had anti-HIV properties and might be a substantial candidate for AIDS patients (<u>Table 2</u>) (<u>Eftekhari et al., 2014</u>).

Antioxidant Activity

Reactive oxygen species (ROS) are associated with several human diseases, such as inflammation, diabetes, ulcers, autoimmune and cardiovascular diseases, viral infections and cancer (<u>Howlett</u>, 2008; <u>Rubió et al.</u>, 2013; <u>Salem et al.</u>, 2020). Most of the activities of *Salix* species were attributed to the presence of several polyphenolic with robust antioxidant activities (<u>Table 3</u>). The antioxidant effects of *Salix* extracts and their flavonoids were mainly assessed by DPPH, ABTS, FRAP, total antioxidant capacity (TAC) assays, Folin-Ciocalteu method, β-carotene bleaching, lipid peroxidation capacity, inhibition of linoleic acid oxidation, superoxide anion radical scavenging, and alkyl radical scavenging assays (Ceyhan, 2014; Gawlik-Dziki et al., 2014; Tavakoli et al., 2016; Zaiter et al., 2016; Nauman et al., 2018; https://assignbuster.com/phytochemistry-pharmacology-and-medicinal-uses-of-plants-of-the-genus-an-updated-review/

Zabihi et al., 2018; Gligoric' et al., 2019). A recent study from our lab investigated the possible effect of *S. tetrasperma* Roxb. extract on neuropathic pain and its mechanism of action showed a potent *in vitro* and *in vivo* antioxidant effects (Sobeh et al., 2019). Furthermore, *S. atrocinerea* Brot. , *S. fragilis* L. and *S. viminalis* L. showed antioxidant effects mediated by their polyphenolic contents (Ramos et al., 2019). Another study from our laboratory showed that *S. subserrata* Willd. leaf extracts contained isorhamnetin-3- $O - \beta - d$ -rutinoside, triandrin, gallocatechin, tremuloidin, aromadendrin, salicin, and chrysoeriol-7- *O*-glucuronid and exerted antioxidant effects against oxidative stress in *Caenorhabditis elegans* (Tawfeek et al., 2019).

Anti-Inflammatory Activity

Inflammation is a frequent condition because of exposure to different stimuli including microbial infection and wounding. It decreases the spread of infection, followed by resolution and the restoration of normal structural and functional of affected tissues (<u>Nathan and Ding, 2010</u>). However, nonresolving inflammation contributes significantly to the pathogenesis of many diseases such as atherosclerosis, obesity, cancer, and inflammatory bowel disease. *Salix* extracts exert potent anti-inflammatory effects that are responsible for many biological effects. The hydroalcoholic extract of *S. tetrasperma* Roxb. in two dose levels (100 and 200 mg/kg) demonstrated anti-inflammatory effects in carrageenan induced rat paw edema model (<u>Kishore et al., 2014</u>). We showed previously that the flower extract of *S. tetrasperma* Roxb. has analgesic, antipyretic, and anti-inflammatory effects against carrageenan induced vascular permeability and carrageenan induced hind paw edema. It inhibited COX-1, COX-2 and LOX and suppressed elevated levels of TNF-a and NF-κB in chronic neuropathic pain model (<u>Sobeh et al., 2019</u>). Oral administration of *S. canariensis* extract significantly decreased writhing, moderately reduced formalin-induced pain and showed a promising dose-dependent anti-inflammatory activities. These effects were attributed to the presence of pentacyclic triterpenes and polyphenolics (<u>Gutiérrez et al., 2017</u>). An early study showed that *S. caprea* L. is a potent cyclooxygenase inhibitor (<u>Tunon et al., 1995</u>). Another study showed that S. *subserrata* Willd. and *S. tetrasperma* Roxb. showed anti-inflammatory effects against carrageenan induced hind paw edema due to the presence of phenolic glycosides mainly salicin as well as the flavonoids luteolin, quercetin and rutin (<u>Karawya et al., 2010</u>). *S. matsudana* Koidz. leaves methanol extract also showed significant inhibitory activities against cyclooxygenases (COX-1 and COX-2) due to the presence of matsudone, luteolin 7-O-glucoside and 4', 7-dihydroxyflavone (<u>Li et al., 2008</u>).

Anticancer Activity

There are several risk factors that can increase the development of cancer that have a basis of low-grade inflammation and oxidative stress. Therefore, targeting inflammatory pathways and suppressing oxidative stress may contribute to inhibition of initiation, proliferation and even cancer metastasis and subside resistance to chemotherapy and radiation. *Salix* extracts, by possessing both anti-inflammatory and potent antioxidant potential, are promising natural sources in fighting cancer. The antiproliferative activities of *Salix* extracts were determined by cell viability percentages and IC ₅₀ values using several *in vitro* assays. The most commonly utilized cancer cell lines were human acute lymphoblastic leukemia (ALL cells), human acute myeloid leukemia cells (AML cells), PC3 cells (Prostate cancer cells), Hep G2 cells (Liver cancer cells), HCT116 (Colorectal cancer cells), MCF7 (Breast cancer cells), HT-29 and HCT 116 (human colon COX-2 positive and negative cells respectively), A549, SW2 cells, and human lung cancer cell line (H1299).

It was observed that a fraction of *Salix* extracted by non-polar solvents such as (petroleum ether, ether, and chloroform) has the minimum killing potential against AML cells while fraction extracted by polar solvents such as 70% ethanol and water has major destructive effect on AML cells (El-Shemy et al., 2003). Thus, Salix cytotoxic activity could be attributed to the polyphenolics, tannins, and glycosides, that are commonly dissolved in water or ethanol solutions including salicin and saligenin. When salicin is tested against leukemic cells it caused destruction of myeloblasts by 70–75%. Eight compounds isolated from *S. hulteni* Flod (1-p-coumaroyl-β-D-glucoside, aromadendrin, catechin, 4-hydroxyacetophenone, picein, sachaliside 1, naringenin and dihydromyricetin) were tested for their cytotoxic potential against brine shrimp and a human lung cancer cell line (H1299). Naringenin, aromadendrin, catechin, and 1- p -coumaroyl- β -D-glucoside showed mild cytotoxic activity, with dihydromyricetin showing the strongest cytotoxic effects. 4-Hydroxyacetophenone, picein, and sachaliside one did not show a significant cytotoxic activity indicating that flavonoid compounds are responsible for the cytotoxic effects of *S. hulteni* Flod. (leon et al., 2008). Brine shrimp lethality test is commonly used to test cytotoxic effects of natural products. The methanol extract of *S. nigra* exerted concentration https://assignbuster.com/phytochemistry-pharmacology-and-medicinal-usesof-plants-of-the-genus-an-updated-review/

dependent cytotoxic effects against brine shrimp indicating promising cytotoxic effects (Ahmed et al., 2016). Willow bark extract (A pharmaceutically used extract BNO 1455) and its fractions (flavonoids, proanthocyanidins, salicyl alcohol derivatives) showed dose dependent cytotoxic effects against human colon and lung cancer irrespective of their COX-2 selectivity (Hostanska et al., 2007). *S. caprea* L. exerted a protective effect against phorbol ester induced skin tumor promotion when applied to the skin of mice prior to the application of phorbol ester. Anti-tumor activity of *S. caprea* L. may be attributed to potent antioxidants constituents of *S. caprea* L. such as luteolin, dihydrokaempferol and quercetin (Sultana and Saleem, 2004).

Neuroprotective Effect

Only few studies investigated the effect of *Salix* species on central and peripheral nervous system. <u>Virupaksha et al. (2016)</u> investigated the effects of *S. tetrasperma* Roxb. leaf extract on locomotor activity and muscle relaxant activity. They demonstrated that the extract decreased locomotor activity indicating central nervous system (CNS) depressant activity and induced a decrease in fall off time due to loss of muscle grip implying skeletal relaxation (<u>Virupaksha et al., 2016</u>). The CNS depressant activity of the extract was attributed to binding of flavonoids to gamma-aminobutyric acid (GABA) receptors in the CNS (<u>Hossain et al., 2009</u>). Another study from our laboratory investigated the possible protective effect of *S. tetrasperma* Roxb. on neuropathic pain model, chronic constriction injury of sciatic nerve model. In this work, we explored the effects of the extract on central and peripheral nervous system in this model. We showed that the extract

improved hyperalgesia and allodynia, the major signs of neuropathic pain through inhibition of oxidative stress and inflammation in sciatic nerve and brain stem (<u>Sobeh et al., 2019</u>).

Hepatoprotective Effects

S. subserrata Willd. flower extract showed marked hepatoprotective effects mostly through lowering the elevated liver enzymes and decreasing the protein levels of two inflammatory biomarkers (NF- κ B and TNF- α) in carbon tetrachloride (CCl ₄)-induced liver damage model (<u>Wahid et al., 2016</u>). It also presented a remarkable ability to reduce lipid peroxidation and had antioxidant effects related to several active ingredients that include flavonoids such as quercetrin, luteolin-7-glucoside, rutin, and quercetin and phenolic compounds such as salignin and catechins.

Anti-Obesity and Anti-lipidemic Effects

As shown in <u>Table 8</u>, remarkable anti-obesity and anti-lipidemic effects have been attributed to *Salix* extracts. The reduction of parametrial adipose tissue weight and body weight gain, the reduction of liver total cholesterol contents and inhibition of the elevated blood triacylglycerol are among the most prominent, directly attributed to its ability to inhibition of intestinal absorption of dietary fat (<u>Liu</u>, 2012). These effects have been mostly attributed to polyphenol fractions (apigenin-7- *O*-D-glucoside, luteolin- *O*-Dglucoside and chrysoeriol-7- *O*-D-glucoside) which inhibited palmitic acid incorporation into small intestinal brush border membrane vesicles (Han et al., 2003). It was reported that methanol extract of *S. pseudo-lasiogyne* H. Lév. twigs and salicortin derivatives reduced lipid accumulation in a concentration-dependent manner. They inhibited the differentiation of https://assignbuster.com/phytochemistry-pharmacology-and-medicinal-usesof-plants-of-the-genus-an-updated-review/ adipocytes in 3T3-L1 cells. The 2', 6'- *O* -acetylsalicortin exhibited the most potent inhibitory activity with IC $_{50} = 11.6 \mu$ M. It remarkably downregulated the expressions of sterol regulatory element binding protein 1 (SREBP1c) and CCAAT/enhancer binding protein α (C/EBP α). Thus, salicortin derivatives possessed anti-adipogenic effects via down-regulation of SREBP1c and C/EBP α dependent pathways (<u>Lee et al., 2013</u>).

Conclusion and Future Perspectives

The current review outlined the complete research progress in the phytochemistry, traditional use and pharmacology of genus *Salix* plant extracts and constituents. *Salix* extracts and some of its components exerted potent antioxidant, anti-inflammatory, antiproliferative, and antimicrobial properties confirming the traditional use of willow extracts in folk medicine. They also demonstrated substantial abilities in suppressing inflammatory pathways, both in cancer prevention and treatment, and in other chronic diseases. Thus, as a potential perspective, *Salix* extracts alone or their isolated active components should be examined more thoroughly, and its anti-HIV, hepatoprotective and neuroprotective therapeutic approach should also be discussed.

Author Contribution

NT retrieved the relevant literature and drafted the manuscript. AME and MW originated the work, led the discussions, provided helpful comments, and revised the manuscript. MF wrote the biological activity part. DH, MS and NF provided helpful comments and revised the manuscript. All authors read and approved the final version of the manuscript.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

The authors would like to thank the Egyptian Government for the Ph. D. scholarship of N. T.

Supplementary Material

The Supplementary Material for this article can be found online at: https://www. frontiersin. org/articles/10. 3389/fphar. 2021. 593856/full#supplementary-material.

Glossary

ABTS2, 2'-azinobis-(3- ethylbenzothiazoline-6-sulfonic acid)

AIDsAcquired immunodeficiency syndrome

ApifApiofuranosyl

ArafArabinofuranosyl

ArapArabinopyranosyl

CCI 4 Carbon tetrachloride

C/EBP α CCAAT/enhancer binding protein α

DPPH2, 2-Diphenyl, one- Picryl Hydrazyl

EACCEhrlich ascites carcinoma cells

EtOAcEthyl acetate

FRAPFerric reducing antioxidant power

GlacGalactosyl

GlcGlucosyl

GlucGlucuronoyl

HexHexosyl

HFDHigh-fat diet

HIVHuman immunodeficiency virus

IC 50 Half maximal inhibitory concentration

MeOHMethanol

MICMinimal inhibitory concentration

NF-kBNuclear factor kappa-B

ORACOxygen radical absorbance capacity

PentPentosyl

PhPhenyl

RhRhamanosyl

RutRutinosyl

SREBP1cSterol regulatory element binding protein 1

TACTotal antioxidant capacity

TFCTotal flavonoid content

TLCThin layer chromatography

TNF-α: Tumor necrosis factor-alpha

TPCTotal phenolic content

XTT2, 3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H- tetrazolium-5carboxanilide

XylpXylopyranosyl.

References

Agnolet, S., Wiese, S., Verpoorte, R., and Staerk, D. (2012). Comprehensive analysis of commercial willow bark extracts by new technology platform: combined use of metabolomics, high-performance liquid chromatographysolid-phase extraction-nuclear magnetic resonance spectroscopy and highresolution radical scavenging assay. *J. Chromatogr. A* . 1262, 130–137. doi: 10. 1016/j. chroma. 2012. 09. 013

Ahmed, A., Akbar, S., and Shah, W. A. (2017). Chemical composition and pharmacological potential of aromatic water from *Salix caprea* inflorescence. *Chin. J. Integr. Med.* 1–5. doi: 10. 1007/s11655-017-2781-5 Ahmed, W., Ahmad, M., Khan, R. A., and Mustaq, N. (2016). Promising inhibition of krait snake's venom acetylcholinesterase by *Salix nigra* and its role as anticancer, antioxidant agent. *Indian J. Anim. Res.* 50, 317–323. doi: 10. 18805/ijar. 10711

Alam, M. S., Kaur, G., Jabbar, Z., Javed, K., and Athar, M. (2006). Evaluation of antioxidant activity of *Salix caprea* flowers. *Phytother. Res.* 20, 479–483. doi: 10. 1002/ptr. 1882

Argus, G. W. (2006). *Guide to the identification of salix (willow) in Illinois, Indiana, Ohio, and Pennsylvania*. Ottawa, Ontario: Canadian Museum of Nature , 47.

Argus, G. W. (2007). *Salix* (Salicaceae) distribution maps and a synopsis of their classification in North America, North of Mexico. *Harv. Pap. Bot.* 12, 335–368. doi: 10. 3100/1043-4534(2007)12[335: ssdmaa]2. 0. co; 2

Asgarpanah, J. (2012). Phytopharmacology and medicinal properties of *Salix aegyptiaca* L. *Afr. J. Biotechnol.* 11, 7145–7150. doi: 10. 5897/AJB12. 418

Balbaa, S., Khafagy, S., Haggag, M., and Sahsah, N. (1979). Phytochemical study of certain *Salix* species cultivated in Egypt. *J. Pharmacol. Sci.* 20, 153–164.

Binns, W. W., Blunden, G., and Woods, D. L. (1968). Distribution of leucoanthocyanidins, phenolic glycosides and imino-acids in leaves of *Salix* species. *Phytochemistry* 7, 1577–1581. doi: 10. 1016/s0031-9422(00)88609-4 Brereton, N. J. B., Berthod, N., Lafleur, B., Pedneault, K., Pitre, F. E., and Labrecque, M. (2017). Extractable phenolic yield variation in five cultivars of mature short rotation coppice willow from four plantations in Quebec. *Ind. Crop. Prod.* 97, 525–535. doi: 10. 1016/j. indcrop. 2016. 12. 049

Bridle, P., Stott, K. G., and Timberlake, C. F. (1970). Anthocyanins in *salix* species. *Phytochemistry* 9, 1097–1098. doi: 10. 1016/s0031-9422(00)85231-0

Bridle, P., Stott, K. G., and Timberlake, C. F. (1973). Anthocyanins in *Salix* species: a new anthocyanin in *Salix purpurea* bark. *Phytochemistry* 12, 1103–1106. doi: 10. 1016/0031-9422(73)85023-x

Ceyhan, M. S. (2014). Investigation of antioxidant properties and anticarcinogenic effects of ethanolic extract from bark of Salix aegyptiaca and its fractions. *MS thesis.* Ankara, Turkey: Middle East Technical University .

Christenhusz, M. J. M., and Byng, J. W. (2016). The number of known plants species in the world and its annual increase. *Phytotaxa* . 261, 201–217. doi: 10. 11646/phytotaxa. 261. 3. 1

Du, Q., Jerz, G., Shen, L., Xiu, L., and Winterhalter, P. (2007). Isolation and structure determination of a lignan from the bark of *Salix alba* . *Nat. Prod. Res.* 21, 451–454. doi: 10. 1080/14786410601083845

Du, Q., Jerz, G., and Winterhalter, P. (2004). Preparation of three flavonoids from the bark of *Salix alba* by high-speed countercurrent chromatographic

separation. *J. Liq. Chromatogr. Relat. Technol.* 27, 3257-3264. doi: 10. 1081/jlc-200034917

Eftekhari, Y., Rustaiyan, A., Monajjemi, M., and Khavari-nejad, R. A. (2014). Study of anti-retroviral effects of *salix aegyptiaca* L herbal extract on HIV-1 *in-vitro*. *Int. J. Mol. Clin. Microbiol.* 1, 398–405.

El-Sayed, M. M., El-Hashash, M. M., Mohamed, H. R., and Abdel-Lateef, E. E.-S. (2015). Phytochemical Investigation and *in vitro* antioxidant activity of different leaf extracts of *Salix mucronata* Thunb. *J. Appl. Pharmaceut. Sci.* 5, 080–085. doi: 10. 7324/japs. 2015. 501213

El-Shazly, A., El-Sayed, A., and Fikrey, E. (2012). Bioactive secondary metabolites from *Salix tetrasperma* Roxb. *Z. Naturforsch. C Biosci.* 67, 353– 359. doi: 10. 5560/znc. 2012. 67c0353

El-Shemy, H. A., Aboul-Enein, A. M., Aboul-Enein, K. M., and Fujita, K. (2007). Willow leaves' extracts contain anti-tumor agents effective against three cell types. *PloS One* 2, e178. doi: 10. 1371/journal. pone. 0000178

El-Shemy, H. A., Aboul-Enein, A. M., Aboul-Enein, M. I., Issa, S. I., and Fujita,K. (2003). The effect of willow leaf extracts on human leukemic cells *in vitro*.*J. Biochem. Mol. Biol.* 36, 387–389. doi: 10. 5483/bmbrep. 2003. 36. 4. 387

Enayat, S., and Banerjee, S. (2009). Comparative antioxidant activity of extracts from leaves, bark and catkins of *Salix aegyptiaca* sp. *Food Chem.* 116, 23–28. doi: 10. 1016/j. foodchem. 2009. 01. 092

Evans, T. P., Clausen, T. P., Reichardt, P. B., and Chang, S. (1995). Structurally intriguing glucosides from Alaskan littletree willow (*Salix arbusculoides*). *J. Nat. Prod.* 58, 1897–1900. doi: 10. 1021/np50126a015

Fayaz, M., and Sivakumaar, P. K. (2014). Phytochemical Analysis and antimicrobial activity of *Salix alba* against dental biofilm forming bacteria. *Int. J. Pharm. Biol. Arch.* 5, 137–140. doi: 10. 22377/IJPBA. V5I2. 1273

Fernandes, C. C., de Carvalho Cursino, L. M., Novaes, J. d. A. P., Demetrio, C. A., Júnior, O. L. P., Nunez, C. V., et al. (2009). Salicylates isolated from leaves and stems of *Salix martiana* Leyb. (Salicaceae). *Quím. Nova* . 32, 983–986. doi: 10. 1590/s0100-40422009000400029

Freischmidt, A., Jürgenliemk, G., Kraus, B., Okpanyi, S., Müller, J., Kelber, O., et al. (2010). Phenolic compounds in the ethyl acetate fraction of a standardized willow bark extract. *Planta. Med.* 76, P283. doi: 10. 1055/s-0030-1264581

Gawlik-Dziki, U., Sugier, D., Dziki, D., and Sugier, P. (2014). Bioaccessibility *in vitro* of nutraceuticals from bark of selected *Salix* species. *Sci. World J.* 2014, 782763. doi: 10. 1155/2014/782763

Gligorić, E., Igić, R., Suvajdžić, L., and Grujić-Letić, N. (2019). Species of the genus *Salix* L.: biochemical screening and molecular docking approach to potential acetylcholinesterase inhibitors. *Appl. Sci.* 9, 1842. doi: 10. 3390/app9091842 González-Alamilla, E. N., Gonzalez-Cortazar, M., Valladares-Carranza, B., Rivas-Jacobo, M. A., Herrera-Corredor, C. A., Ojeda-Ramírez, D., et al. (2019). Chemical constituents of *Salix babylonica* L. and their antibacterial activity against gram-positive and gram-negative animal bacteria. *Molecules* 24, 2992. doi: 10. 3390/molecules24162992

Gutiérrez, S. D., Kuri, S. A., and Martín-Herrera, D. (2017). The bioguided fractionation and pharmacological activity of an endemic *Salix canariensis* species. *Acta Pharm.* 67, 265–273. doi: 10. 1515/acph-2017-0012

Gąsecka, M., Mleczek, M., Jutrzenka, A., Goliński, P., and Stuper-Szablewska, K. (2017). Phenolic compounds in leaves of *Salix* species and hybrids growing under different soil conditions. *Chem. Ecol.* 33, 196–212. doi: 10. 1080/02757540. 2017. 1289186

Han, L. K., Sumiyoshi, M., Zhang, J., Liu, M. X., Zhang, X. F., Zheng, Y. N., et al. (2003a). Anti-obesity action of *Salix matsudana* leaves (Part 1). Antiobesity action by polyphenols of *Salix matsudana* in high fat-diet treated rodent animals. *Phytother. Res.* 17, 1188–1194. doi: 10. 1002/ptr. 1404

Han, L. K., Sumiyoshi, M., Zheng, Y. N., Okuda, H., and Kimura, Y. (2003b). Anti-obesity action of *Salix matsudana* leaves (Part 2). Isolation of antiobesity effectors from polyphenol fractions of *Salix matsudana*. *Phytother. Res.* 17, 1195–1198. doi: 10. 1002/ptr. 1405

Hernandez, P. M., Salem, A. Z., Elghandour, M. M., Cipriano-Salazar, M., Cruz-Lagunas, B., and Camacho, L. M. (2014). Anthelmintic effects of *Salix* *babylonica* L. and *Leucaena leucocephala* Lam. extracts in growing lambs. *Trop. Anim. Health Prod.* 46, 173–178. doi: 10. 1007/s11250-013-0471-7

Highfield, E. S., and Kemper, K. J. (1999). Long wood herbal task force white willow bark (Salix alba). Available at: www. mcp. edu/herbal/default htm (Accessed July 13, 1999).

Hossain, M. M., Biva, I. J., Jahangir, R., and Vhuiyan, M. M. I. (2009). Central nervous system depressant and analgesic activity of *Aphanamixis polystachya* (Wall.) parker leaf extract in mice. *Afr. J. Pharm. Pharmacol.* 3, 282–286. doi: 10. 5897/AJPP. 9000073

Hostanska, K., Jürgenliemk, G., Abel, G., Nahrstedt, A., and Saller, R. (2007). Willow bark extract (BNO1455) and its fractions suppress growth and induce apoptosis in human colon and lung cancer cells. *Canc. Detect. Prev.* 31, 129– 139. doi: 10. 1016/j. cdp. 2007. 03. 001

Howlett, J. (2008). *Functional foods: from science to health and claims* . Brussels, Belgium: ILSI Europe , 3772–3781.

Hsu, F.-L., Nonaka, G.-I., and Nishioka, I. (1985). Acylated flavanols and procyanidins from *Salix sieboldiana* . *Phytochemistry* 24, 2089–2092. doi: 10. 1016/s0031-9422(00)83128-3

Hussain, H., Badawy, A., Elshazly, A., Elsayed, A., Krohn, K., Riaz, M., et al. (2011). Chemical constituents and antimicrobial activity of *Salix subserrata* . *Record Nat. Prod.* 5, 133–137. Isebrands, J. G., and Richardson, J. (2014). *Poplars and willows: trees for society and the environment*. Boston, USA: The Food and Agriculture Organization of the United Nations and CABI, 634.

Januarti, R., Santoni, A., and Efdi, M. (2019). Isolation of flavonoid compound and antioxidant activity of *Salix tetrasperma* Roxb. leaves. *Indones. J. Fundamental Appl. Chem.* 4, 42–46. doi: 10. 24845/ijfac. v4. i2. 42

Jeon, S. H., Chun, W., Choi, Y. J., and Kwon, Y. S. (2008). Cytotoxic constituents from the bark of *Salix hulteni* . *Arch Pharm. Res.* 31, 978–982. doi: 10. 1007/s12272-001-1255-9

Jürgenliemk, G., Petereit, F., and Nahrstedt, A. (2007). Flavan-3-ols and procyanidins from the bark of *Salix purpurea* L. *Pharmazie* . 62, 231–234. doi: 10. 1691/ph. 2007. 3. 6577

Karawya, M. S., Ammar, N. M., and Hifnawy, M. S. (2010). Phytochemical study and evaluation of the anti-inflammatory activity of some medicinal plants growing in Egypt. *Med J. Islamic World Acad. Sci.* 109, 1–12.

Karimi, I., Hayatgheybi, H., Kamalak, A., Pooyanmehr, M., and Marandi, Y. (2011). Chemical composition and effect of an essential oil of *Salix aegyptiaca* L., Salicaceae, (musk willow) in hypercholesterolemic rabbit model. *Rev. Bras. Farmacogn.* 21, 407–414. doi: 10. 1590/s0102-695x2011005000030 Khatoon, F., Khabiruddin, M., and Ansari, W. (1988). Phenolic glycosides from *Salix babylonica*. *Phytochemistry* 27, 3010–3011. doi: 10. 1016/0031-9422(88)80716-7

Kim, C. S., Kwon, O. W., Kim, S. Y., Choi, S. U., Kim, J. Y., Han, J. Y., et al. (2014). Phenolic glycosides from the twigs of *Salix glandulosa* . *J. Nat. Prod.* 77, 1955–1961. doi: 10. 1021/np500488v

Kim, C. S., Subedi, L., Park, K. J., Kim, S. Y., Choi, S. U., Kim, K. H., et al. (2015). Salicin derivatives from *Salix glandulosa* and their biological activities. *Fitoterapia* . 106, 147–152. doi: 10. 1016/j. fitote. 2015. 08. 013

Kishore, R. N., Mangilal, T., Anjaneyulu, N., Abhinayani, G., and Sravya, N. (2014). Investigation of anti-inflammatory and invitro antioxidant activities of hydroalcoholic extract of bark of *Salix tetrasperma* Roxb. *Int. J. Pharm. Drug Anal.* 2, 506–509.

Kompantsev, V. A., and Shinkarenko, A. L. (1975). (–)-Salipurposide from the bark of *Salix elbursensis* . *Chem. Nat. Compd.* 11, 682. doi: 10. 1007/bf00567714

Kompantsev, V. (1969). Flavonoids of the bark of *Salix elbursensis* . *Chem. Nat. Compd.* 5, 274. doi: 10. 1007/bf00683860

Kompantsev, V., Gaidash, P., and Dauksha, A. (1974). Phenolic compounds of the bark of *Salix alba* × *babylonica* . *Chem. Nat. Compd.* 10, 839. doi: 10. 1007/bf00564031 Kompantsev, V., and Shinkarenko, A. (1973). Phenolic glycosides of the roots of *Salix pentandroides* . *Chem. Nat. Compd.* 9, 127. doi: 10.

Krauze-Baranowska, M., Pobłocka-Olech, L., Głód, D., Wiwart, M., Zieliński, J., and Migas, P. (2013). HPLC of flavanones and chalcones in different species and clones of *Salix*. *Acta Pol. Pharm.* 70, 27–34.

Kuzovkina, Y. A., and Vietto, L. (2014). An update on the cultivar registration of *Populus* and *Salix* (Salicaceae). *Skvortsovia* 1, 133–148.

Lauron-Moreau, A., Pitre, F. E., Argus, G. W., Labrecque, M., and Brouillet, L. (2015). Phylogenetic relationships of american willows (*salix* L., Salicaceae). *PloS One* 10, e0121965. doi: 10. 1371/journal. pone. 0121965

Lee, M., Lee, S. H., Kang, J., Yang, H., Jeong, E. J., Kim, H. P., et al. (2013). Salicortin-derivatives from *Salix pseudo-lasiogyne* twigs inhibit adipogenesis in 3T3-L1 cells via modulation of C/EBPα and SREBP1c dependent pathway. *Molecules* 18, 10484–10496. doi: 10. 3390/molecules180910484

Li, W., Shi, L. L., Han, L. Q., and Zhang, J. (2013). Development and validation of a RP-HPLC method for simultaneous determination of salicin and eight flavonoids in leaves of *Salix Matsudana* Koidz. *Acta Chromatograph.* 25, 735– 743. doi: 10. 1556/achrom. 25. 2013. 4. 11

Li, X., Liu, Z., Zhang, X.-f., Wang, L.-j., Zheng, Y.-n., Yuan, C.-c., et al. (2008). Isolation and characterization of phenolic compounds from the leaves of *Salix matsudana* . *Molecules* . 13, 1530–1537. doi: 10. 3390/molecules13081530

Liu, K.-Y., Liu, H.-J., Zhou, B., and Han, L.-k. (2008). Studies on chemical constituents from *Salix babylonica* L. and their stimulating lipolysis activity. *J. Fudan Uni.* 4, 022.

Liu, K. Y. (2012). Stimulatory effects of extracts prepared from *Salix babylonica* L. on fat catabolism in mice fed high-fat diet. *Adv. Mater. Res.* 518–523, 498–501. doi: 10. 4028/www. scientific. net/amr. 518-523. 498

Mabberley, D. J. (2008). *Mabberley's plant-book: a portable dictionary of plants, their classifications and uses*. Cambridge: Cambridge University Press , 972.

Mahdi, J. G. (2010). Medicinal potential of willow: a chemical perspective of aspirin discovery. *J. Saudi Chem. Soc.* 14, 317–322. doi: 10. 1016/j. jscs. 2010. 04. 010

Maistro, E. L., Terrazzas, P. M., Perazzo, F. F., Gaivão, I. O. N. D. M., Sawaya, A. C. H. F., and Rosa, P. C. P. (2019). *Salix alba* (white willow) medicinal plant presents genotoxic effects in human cultured leukocytes. *J. Toxicol. Environ. Part A.* 82, 1223–1234. doi: 10. 1080/15287394. 2019. 1711476

Malterud, K. E., and Dugstad, E. K. S. (1985). 4, 2'-dihydroxy-3, 5dimethoxybiphenyl, a new phenol from the wood of *Salix caprea* L. *Z. Naturforsch. B Chem. Sci.* 40, 853–854. doi: 10. 1515/znb-1985-0629 Masika, P., Sultana, N., Afolayan, A., and Houghton, P. (2005). Isolation of two antibacterial compounds from the bark of *Salix capensis* . *South Afr. J. Bot.* 71, 441–443. doi: 10. 1016/s0254-6299(15)30117-4

Mizuno, M., Kato, M., Hosoi, N., linuma, M., Tanaka, T., Kimura, A., et al. (1990). Phenolic compounds from *Salix sachalinensis* . *Heterocycles* 31, 1409–1412. doi: 10. 3987/com-90-5425

Mizuno, M., Kato, M., Iinuma, M., Tanaka, T., Kimura, A., Ohashi, H., et al. (1987). Acylated luteolin glucosides from *Salix gilgiana* . *Phytochemistry* 26, 2418–2420. doi: 10. 1016/s0031-9422(00)84739-1

Mizuno, M., Kato, M., Misu, C., Iinuma, M., and Tanaka, T. (1991).
Chaenomeloidin: a phenolic glucoside from leaves of *Salix chaenomeloides*. *J. Nat. Prod.* 54, 1447–1450. doi: 10. 1021/np50077a042

Mostafa, I., Abbas, H. A., Ashour, M. L., Yasri, A., El-Shazly, A. M., Wink, M., et al. (2020). Polyphenols from *Salix tetrasperma* impair virulence and inhibit quorum sensing of *Pseudomonas aeruginosa* . *Molecules* 25, 1341. doi: 10. 3390/molecules25061341

Nasudari, A. A., Kompantsev, V. A., Oganesyan, É. T., and Shinkarenko, A. L. (1972). Luteolin 7-glucoside from the leaves of *Salix caprea* . *Chem. Nat. Compd.* 8, 388. doi: 10. 1007/bf00563763

Nathan, C., and Ding, A. (2010). Nonresolving inflammation. *Cell* 140, 871-882. doi: 10. 1016/j. cell. 2010. 02. 029 Nauman, M., Kale, R., and Singh, R. P. (2018). Polyphenols of *Salix aegyptiaca* modulate the activities of drug metabolizing and antioxidant enzymes, and level of lipid peroxidation. *BMC Compl. Alter. Med.* 18, 81. doi: 10. 1186/s12906-018-2143-7

Nichols-Orians, C. M., Clausen, T. P., Fritz, R. S., Reichardt, P. B., and Wu, J. (1992). 2'-Cinnamoylsalicortin, a phenolic glycoside from *Salix sericea* . *Phytochemistry* 31, 2180–2181. doi: 10. 1016/0031-9422(92)80397-w

Noleto-Dias, C., Harflett, C., Beale, M. H., and Ward, J. L. (2020). Sulfated flavanones and dihydroflavonols from willow. *Phytochem. Lett.* 35, 88–93. doi: 10. 1016/j. phytol. 2019. 11. 008

Noleto-Dias, C., Ward, J. L., Bellisai, A., Lomax, C., and Beale, M. H. (2018). Salicin-7-sulfate: a new salicinoid from willow and implications for herbal medicine. *Fitoterapia* 127, 166–172. doi: 10. 1016/j. fitote. 2018. 02. 009

Noleto-Dias, C., Wu, Y., Bellisai, A., Macalpine, W., Beale, M., and Ward, J. (2019). Phenylalkanoid glycosides (Non-Salicinoids) from wood chips of *Salix triandra* × *dasyclados* hybrid willow. *Molecules* 24, 1152. doi: 10. 3390/molecules24061152

Pearl, I. A., and Darling, S. F. (1970). Purpurein, a new glucoside from the bark of *Salix purpurea*. *Phytochemistry* 9, 853–856. doi: 10. 1016/s0031-9422(00)85192-4

Pobłocka-Olech, L., and Krauze-Baranowska, M. (2008). SPE-HPTLC of procyanidins from the barks of different species and clones of *Salix* . *J. Pharmaceut. Biomed. Anal.* 48, 965–968. doi: 10. 1016/j. jpba. 2008. 05. 039

Pohjamo, S. P., Hemming, J. E., Willför, S. M., Reunanen, M. H., and Holmbom, B. R. (2003). Phenolic extractives in *Salix caprea* wood and knots. *Phytochemistry* 63, 165–169. doi: 10. 1016/s0031-9422(03)00050-5

Popova, T. P., and Kaleva, M. D. (2015). Antimicrobial effect *in vitro* of aqueous extracts of leaves and branches of willow (*Salix babylonica* L). *Int. J. Curr. Microbiol. Appl. Sci.* 4, 146–152.

Prashith Kekuda, T., Vinayaka, K., and Raghavendra, H. (2017). Ethnobotanical uses, phytochemistry and biological activities of *Salix tetrasperma* roxb.(Salicaceae)-A review. *J. Med. Plants* 5, 201–206.

Ramos, P. A. B., Moreirinha, C., Silva, S., Costa, E. M., Veiga, M., Coscueta, E., et al. (2019). The health-promoting potential of *Salix* spp. bark polar extracts: key insights on phenolic composition and *in vitro* bioactivity and biocompatibility. *Antioxidants* 8, 609. doi: 10. 3390/antiox8120609

Rawat, U., Semwal, S., Semwal, D., Badoni, R., and Bamola, A. (2009). A new flavonoid glycoside from *salix denticulata* aerial parts. *Molbank* . 2009, M622. doi: 10. 3390/M622

Reichardt, P. B., Merken, H. M., Clausen, T. P., and Wu, J. (1992). Phenolic glycosides from *Salix lasiandra* . *J. Nat. Prod.* 55, 970–973. doi: 10.

1021/np50085a022

Rubió, L., Motilva, M.-J., and Romero, M.-P. (2013). Recent advances in biologically active compounds in herbs and spices: a review of the most effective antioxidant and anti-inflammatory active principles. *Crit. Rev. Food Sci. Nutr.* 53, 943–953. doi: 10. 1080/10408398. 2011. 574802

Salem, A.-F. Z., Salem, M. Z., Gonzalez-Ronquillo, M., Camacho, L., and Cipriano, M. (2011). Major chemical constituents of *Leucaena leucocephala* and *Salix babylonica* leaf extracts. *J. Trop. Agric.* 49, 95–98.

Salem, A. Z., Elghandour, M. M., Kholif, A. E., López, S., Pliego, A. B., Cipriano-Salazar, M., et al. (2017). Tree leaves of *Salix babylonica* extract as a natural anthelmintic for small-ruminant farms in a semiarid region in Mexico. *Agrofor. Syst.* 91, 111–122. doi: 10. 1007/s10457-016-9909-z

Salem, M. A., Hamdan, D. I., Mostafa, I., Adel, R., Elissawy, A., and El-Shazly, A. M. (2020). "Natural products, the new intervention regime of metabolic disorders," in *Natural products in clinical trials, atta-ur-rahman, shazia anjum and hesham R. El-seedi*. Singapore: Bentham Book Imprint, Chapter 2, Vol. 2, 32–122.

Sati, S., Singh, H., Badoni, P., and Sati, M. (2013). Screening of fungicidal activity of *salix* and *triumfetta* species of garhwal himalaya. *AJPCT* 1, 486-489.

Semwal, S., Rawat, U., and Sharma, R. K. (2011). Isolation and characterization of a new flavone diglucoside from *Salix denticulata* . *Chem. Nat. Compd.* 47, 366. doi: 10. 1007/s10600-011-9935-z Shah, Z. A., Hameed, A., Ahmed, A., Simjee, S. U., Jabeen, A., Ullah, A., et al.
(2016). Cytotoxic and anti-inflammatory salicin glycosides from leaves of *Salix acmophylla*. *Phytochem. Lett.* 17, 107–113. doi: 10. 1016/j. phytol.
2016. 07. 013

Shao, Y., Lahloub, M., Meier, B., and Sticher, O. (1989). Isolation of phenolic compounds from the bark of *Salix pentandra* . *Planta Med.* 55, 617–618. doi: 10. 1055/s-2006-962172

Shelyuto, V. L., and Bondarenko, V. G. (1985). Flavonoids of *Salix acutifolia* . *Chem. Nat. Compd.* 21, 534. doi: 10. 1007/bf00579161

Shen, T., Tian, Y.-Q., Liu, W.-X., and Zheng, S.-Z. (2008). Acyclic diterpene-γlactones and flavonoid from *Salix cheilophila* Omitted. *J. Chin. Chem. Soc.* 55, 401–405. doi: 10. 1002/jccs. 200800059

Singh, H., Raturi, R., and Badoni, P. (2017). Isolation of secondary metabolites from the roots of salix babylonica. *Mater. Sci. Eng.* 225, 012094. doi: 10. 1088/1757-899x/225/1/012094

Sobeh, M., Mahmoud, M. F., Rezq, S., Alsemeh, A. E., Sabry, O. M., Mostafa, I., et al. (2019). *Salix tetrasperma* roxb. Extract alleviates neuropathic pain in rats via modulation of the NF-κB/TNF-α/NOX/iNOS pathway. *Antioxidants* 8, 482. doi: 10. 3390/antiox8100482

Sonboli, A., Mojarrad, M., Ebrahimi, S. N., and Enayat, S. (2010). Free radical scavenging activity and total phenolic content of methanolic extracts from

male inflorescence of *Salix aegyptiaca* grown in Iran. *Iran. J. Pharm. Res. (IJPR)* . 9, 293–296.

Sulaiman, G. M., Hussien, N. N., Marzoog, T. R., and Awad, H. A. (2013). Phenolic content, antioxidant, antimicrobial and cytotoxic activities of ethanolic extract of *Salix alba* . *Am. J. Biochem. Biotechnol.* 9, 41–46. doi: 10. 3844/ajbbsp. 2013. 41. 46

Sultana, S., and Saleem, M. (2004). *Salix caprea* inhibits skin carcinogenesis in murine skin: inhibition of oxidative stress, ornithine decarboxylase activity and DNA synthesis. *J. Ethnopharmacol.* 91, 267–276. doi: 10. 1016/j. jep. 2003. 12. 028

Tavakoli, F., Rahmani, F., and Heidari, R. (2016). Radical scavenging activity and total phenolic content in methanolic extracts of leaves and male inflorescence catkin of willow. *Curr. Nutr. Food Sci.* 12, 241–248. doi: 10. 2174/1573401312666160901123434

Tawfeek, N., Sobeh, M., Hamdan, D. I., Farrag, N., Roxo, M., El-Shazly, A. M., et al. (2019). Phenolic compounds from *Populus alba* L. and *Salix subserrata* Willd.(Salicaceae) counteract oxidative stress in *Caenorhabditis elegans*. *Molecules* 24, 1999. doi: 10. 3390/molecules24101999

Thadeo, M., Azevedo, A. A., and Meira, R. M. S. A. (2014). Foliar anatomy of neotropical Salicaceae: potentially useful characters for taxonomy. *Plant Systemat. Evol.* 300, 2073–2089. doi: 10. 1007/s00606-014-1037-5

Tuberoso, C. I., Jerković, I., Bifulco, E., and Marijanović, Z. (2011). Biodiversity of *Salix* spp. honeydew and nectar honeys determined by RP-HPLC and evaluation of their antioxidant capacity. *Chem. Biodivers.* 8, 872– 879. doi: 10. 1002/cbdv. 201000359

Tunon, H., Olavsdotter, C., and Bohlin, L. (1995). Evaluation of antiinflammatory activity of some Swedish medicinal plants. Inhibition of prostaglandin biosynthesis and PAF-induced exocytosis. *J. Ethnopharmacol.* 48, 61–76. doi: 10. 1016/0378-8741(95)01285-l

Van Wyk, B.-E., and Wink, M. (2018). *Medicinal plants of the world*. Pretoria, South Africa: CABI , 648.

Vinokurov, I. I. (1979). Flavonoid glycosides of *Salix rubra* . *Chem. Nat. Compd.* 15, 355–356. doi: 10. 1007/bf00566096

Virupaksha, J. H., Nadendla, R. R., Kumar, M. S., and Kavya, S. (2016). Effect of *Salix tetrasperma* Roxburgh leaf extracts on central nervous system activities. *Res. J. Pharmaceut. Biol. Chem. Sci.* 7, 2060–2064.

Wahid, A., Hamed, A. N., Eltahir, H. M., and Abouzied, M. M. (2016).
Hepatoprotective activity of ethanolic extract of *Salix subserrata* against CCI
4-induced chronic hepatotoxicity in rats. *BMC Compl. Alternative Med.* 16,
263. doi: 10. 1186/s12906-016-1238-2

Wiesneth, S. C. (2019). Phytochemische Untersuchung des phenolischen Inhaltsstoffspektrums in Salix Spezies unter besonderer Berücksichtigung der Flavan-3-ole. Ph. D. dissertation. Germany: Universität Regensburg . Wu, Y., Dobermann, D., Beale, M. H., and Ward, J. L. (2016). Acutifoliside, a novel benzoic acid glycoside from *Salix acutifolia*. *Nat. Prod. Res.* 30, 1731–1739. doi: 10. 1080/14786419. 2015. 1137571

Zabihi, N. A., Mahmoudabady, M., Soukhtanloo, M., Hayatdavoudi, P., Beheshti, F., and Niazmand, S. (2018). *Salix alba* attenuated oxidative stress in the heart and kidney of hypercholesterolemic rabbits. *Avicenna J. Phytomed.* 8, 63.

Zaiter, A., Becker, L., Petit, J., Zimmer, D., Karam, M.-C., Baudelaire, É., et al. (2016). Antioxidant and antiacetylcholinesterase activities of different granulometric classes of *Salix alba* (L.) bark powders. *Powder Technol.* 301, 649–656. doi: 10. 1016/j. powtec. 2016. 07. 014

Zapesochnaya, G. G., Kurkin, V. A., Braslavskii, V. B., and Filatova, N. V. (2002). Phenolic compounds of *Salix acutifolia* bark. *Chem. Nat. Compd.* 38, 314–318. doi: 10. 1023/a: 1021661621628

Zarger, M. S. S., Khatoon, F., and Akhtar, N. (2014). Phytochemical investigation and growth inhibiting effects of *Salix alba* leaves against some pathogenic fungal isolates. *World J. Pharm. Pharmacol.* 3, 1320–1330.

Zeid, A., Hifnawy, M., Saleh, M., Sleem, A., and Mohamed, R. (2006). Phenolics, volatiles and biological activities of *Salix babylonica* L. leaves and stem bark. *Planta Med.* 72, 335. doi: 10. 1055/s-2006-950135

Zengion, A. H., and Yarnell, E. (2011). "Herbal and nutritional supplements for painful conditions," in *Pain procedures in clinical practice*. Editors T. A. Lennard, S. A. Walkowski, K. A. Singla, and D. Vivian (Philadelphia, PA: Elsevier Saunders), 3, 187–204.

Zhao, L., Liu, L., and Li, J. (2014). Qualitative and quantitative analysis of five bioactive flavonoids in *Salix bordensis* Turcz. by HPLC-DAD and HPLC-ESI-MS. *Am. J. Anal. Chem.* 5, 851. doi: 10. 4236/ajac. 2014. 513094

Zhen-Fu, F. (1987). On the distribution and origin of *Salix* in the world. *J. Systemat. Evol.* 25, 307–313