
Searching and
indexing genomic
databases via
kernelization

Health & Medicine

https://assignbuster.com/essay-subjects/health-n-medicine/
https://assignbuster.com/searching-and-indexing-genomic-databases-via-kernelization/
https://assignbuster.com/searching-and-indexing-genomic-databases-via-kernelization/
https://assignbuster.com/searching-and-indexing-genomic-databases-via-kernelization/
https://assignbuster.com/

 Searching and indexing genomic databases... – Paper Example Page 2

1. Introduction
The Human Genome Project took 13 years and three billion dollars to

sequence a human genome, but the latest next-generation sequencing

methods take only a few days and a few thousand dollars. With these

methods, initiatives such as the 1000 Genomes Project and the 100, 000

Genomes Project are now feasible. Advances in sequencing have far

outstripped advances in computer processors and random-access memory,

however, so it is increasingly challenging to make use of the data available.

For example, while modern aligners can easily hold in memory the index for

approximate pattern matching on a single human genome, they cannot

handle thousands of human genomes. Schneeberger et al. (2009) proposed

that we index the common parts of the genomes only once for them all, but

we index the parts near variation sites for each genome. Ferrada et al.

(2014b) suggested indexing the parts of all the genomes near boundaries

between phrases in the LZ77 parse of the database. This is more general and

may give better compression but requires the LZ77 parse, which is difficult

to compute when the database does not fit in memory. Wandelt et al. (2013)

proposed using a modified parse in which phrases must occur in a reference

genome, which is easier to compute. (When papers have appeared in

journals we cite those versions, although their chronological order may differ

from that of previous versions.) Danek et al. (2014) recently showed that

with this general approach we can store an index for approximate pattern

matching on the database from the 1000 Genomes Project, in the memory of

a commodity personal computer. This has so far not been possible with

competing approaches, as surveyed by Vyverman et al. (2012) .

https://assignbuster.com/searching-and-indexing-genomic-databases-via-
kernelization/

 Searching and indexing genomic databases... – Paper Example Page 3

When we are not given an upper bound on the pattern length, we can use

one of the competing indexes that does not require such a bound or we can

scan, with an online pattern-matching algorithm, the reference genome, and

the parts of the other genomes near phrase boundaries. Wandelt and Leser

(2012) and Rahn et al. (2014) proposed the latter idea specifically for

approximate pattern matching in genomic databases, but the general

approach has a 20-year history in the field of compressed pattern matching.

In this paper, we survey that history and relate it to current research: in

Section 2 we discuss some relevant data compression schemes and how

they have been augmented to support fast random-access reading; in

Section 3 we discuss how they have been used to speed up pattern-

matching; in Section 4 we discuss how they have been used in compressed

indexing. While writing this survey, we realized that scanning or indexing

only parts of the database and then mapping the solution for those parts

onto a solution for the whole database, is like kernelization in parameterized

complexity (We note that kernels in parameterized complexity bear no

relation to operating system kernels nor to kernels in machine learning.). We

emphasize this perspective because we feel that computing a pattern-

matching kernel is an interesting problem in itself, regardless of how we

process it later, and deserving of further study. Of course, the nature and

even the existence of the kernel depend on the problem we are trying to

solve.

2. Compression with Random-Access Reading
In general, the best compression of highly repetitive datasets is achieved

with the LZ77 algorithm by Ziv and Lempel (1977) . Suppose S [1, …, n] is a
https://assignbuster.com/searching-and-indexing-genomic-databases-via-
kernelization/

 Searching and indexing genomic databases... – Paper Example Page 4

string with S [n] = $, which is an end-of-file symbol that does not occur

elsewhere in S . LZ77 works by parsing S into phrases such that, for each

phrase S [i , …, j], S [i , …, j − 1] occurs in S [1, …, j − 2] but S [i , …, j]

does not occur in S [1, …, j − 1]; that phrase is stored as a triple consisting

of a pointer to S [i , …, j]’s first occurrence in S (which is called the phrase’s

source), j − i , and S [j]. The LZ77 encoding of S takes ???? (z log n) bits,

where z is the number of phrases in the parse. For example, in the following

verses vertical lines indicate phrase boundaries:

9| 9-| b| o| t| tl| e| s|-o| f|-be| er|-on|-t| h| e-| w| a| ll|-9| 9-bottles-of-beer-

I| f-o| n| e-o| f-t| ho| se|-bottles-s| hou| ld|-h| ap| pe| n-to|-f| all-

98|-bottles-of-beer-on-the-wall-

98|-bottles-of-beer-on-the-wall-98-bottles-of-beer-

I| f-one-of-those-bottles-should-happen-to-fall-

97|-bottles-of-beer-on-the-wall …

(We have displayed the verses with linebreaks to increase readability, but we

have not considered them while computing the parse.) Although these

verses may be annoyingly similar by the standards of natural language, they

are far less similar than human genomes. Indeed, most repetitive biological

datasets are much too similar (as well as much too large) for us to use them

as informative examples.

https://assignbuster.com/searching-and-indexing-genomic-databases-via-
kernelization/

 Searching and indexing genomic databases... – Paper Example Page 5

One drawback of LZ77 compression is that reading a character in a

compressed string can be very slow. Rytter (2003) and Charikar et al. (2005)

showed how we can turn that parse into a balanced straight-line program

(SLP) for S with ???? (z log n) rules. An SLP for S is a context-free grammar

in Chomsky normal form that generates S and only S ; it is balanced if the

height of each subtree in the parse tree is logarithmic in that subtree’s size.

It follows from Rytter’s and Charikar et al.’s results that we can store S in

???? (z log 2 n) bits and support random-access reading of any substring of

S with length l in ???? (log n + l) time. Verbin and Yu (2013) showed that

this is nearly optimal in the worst case. Bille et al. (2011) showed how, given

even an unbalanced SLP for S with r rules, we can store S in ???? (r log n)

bits and support random-access reading in ???? (log n + l) time. Rytter’s,

Charikar et al.’s, and Bille et al.’s constructions are not practical, but there

are practical grammar-based compressors, such as those by Larsson and

Moffat (1999) and Maruyama and Tabei (2014) . As far as we know, block

graphs by Gagie et al. (2011) and Gagie et al. (2014c) are the most practical

grammar-like representations for random-access reading. The LZ78

algorithm by Ziv and Lempel (1978) does not compress repetitive datasets

as well as LZ77, but the LZ78 encoding of S can easily be augmented to

support random-access reading in ???? (log log n + l) time. LZ78 also works

by parsing S into phrases but then each phrase must extend a previous

phrase plus one character. Because of this property, the LZ78 encoding of S

has Ω (n) phrases, even when S = a n .

In the example above, the first verse contains many phrase boundaries but

the second verse contains only three. Kuruppu et al. (2010) proposed that,
https://assignbuster.com/searching-and-indexing-genomic-databases-via-
kernelization/

 Searching and indexing genomic databases... – Paper Example Page 6

given a set of similar strings (or one string that can easily be divided into

similar substrings), we store the first string in plain text as a reference and

compress the others with a version of LZ77 that restricts phrases’ sources to

occur in the reference. They called this scheme Relative Lempel–Ziv (RLZ)

and showed it compresses genomic databases very well in practice (although

it too uses Ω (n) phrases, even when S = a n) and there are several

implementations of this approach, such as those by Deorowicz and

Grabowski (2011) , Kuruppu et al. (2012) , and Ferrada et al. (2014a) . Even

when there is no obvious reference, Kuruppu et al. (2011) showed we can

often build one by sampling the dataset: intuitively, if a substring is common

then it is likely to appear in our sample, and if it is not then we lose little by

not compressing it well; this can be formalized using results about SLPs.

3. Searching
Farach and Thorup (1998) observed that the first occurrence of any pattern

P [1, … , m] in S must cross or end at a phrase boundary in the LZ77 parse.

Kärkkäinen and Ukkonen (1996) showed how, if we already know the

locations of P ’s occurrences in S that cross or end at phrase boundaries,

then we can deduce the locations of all its other occurrences from the

structure of the parse. By the same arguments, LZ78 also has these

properties and (Karpinski et al., 1997) simultaneously proved similar results

for SLPs. Bille et al. (2009) observed that any substring of S within edit

distance k of P (i. e., any of P ’s approximate matches) has length at most m

+ k , and any such substring that does not cross or end at an LZ78 phrase

boundary must be an exact copy of an earlier one that does. They gave an

algorithm for approximate pattern matching in LZ78 strings that works by
https://assignbuster.com/searching-and-indexing-genomic-databases-via-
kernelization/

 Searching and indexing genomic databases... – Paper Example Page 7

extracting the m + k and m + k − 1 characters before and after each LZ78

phrase boundary, respectively, using a technique similar to those discussed

in Section 2; scanning the resulting substrings with any online algorithm for

approximate pattern matching in uncompressed strings; and then deducing

the locations of the other approximate matches from the structure of the

parse.

Bille et al. (2011) extended this approach to show how we can find all P ’s

approximate matches in S from an SLP for S . Recently, Gagie et al. (2014b)

extended it further to show how we can preprocess the LZ77 parse of S in

???? (z log n) time such that later, given P and k , we can find all P ’s occ

approximate matches in ???? (z min(mk , m + k 4) + occ) time. Their

algorithm works by extracting the m + k and m + k − 1 characters before

and after each LZ77 phrase boundary, respectively, and then continuing as

with the algorithm by Bille et al. (2009) . The set of substrings we extract is

like a kernel in parameterized complexity: the total length of the substrings

can be much smaller than n , but a solution on them can quickly be mapped

to a solution on all of S . For our example from Section 2 with m = 4 and k =

1, the kernel is:

99-bottles-of-beer-on-the-wall-99-bo

eer-If-one-of-those-bottles-should-happen-to-fall-98-bot

ll-98-bot

eer-If-on

https://assignbuster.com/searching-and-indexing-genomic-databases-via-
kernelization/

 Searching and indexing genomic databases... – Paper Example Page 8

ll-97-bot …

If we want a kernel consisting of only a single string, we can concatenate the

substrings with k + 1 copies of $ between each consecutive pair. Notice that

if we are careful, we can avoid scanning the fourth substring “ eer-If-on,”

since it occurs in the second substring.

We do not wish to leave the impression that kernelization is the only

approach used in compressed pattern matching, nor even that the papers

mentioned above are the only ones that use it. We have focused on those

papers because we feel they are the most relevant to the practical

bioinformatics papers by Wandelt and Leser (2012) and Rahn et al. (2014)

mentioned in Section 1. Those authors were apparently unaware of the field

of compressed pattern matching and re-invented kernelization specifically

for approximate pattern matching in genomic databases, with kernels based

on RLZ instead of LZ77, LZ78, or SLPs. This may be because the earlier

researchers using kernelization for pattern matching did not perform

convincing experiments on large enough datasets, publicize their ideas in

interdisciplinary forums or implement their ideas in tools usable by other

scientists.

4. Indexing
Kärkkäinen and Ukkonen (1996) gave the first LZ-based index, which

supported exact pattern matching and stored S separately and

uncompressed. They used Patricia trees and range reporting to find a set of

candidate matches crossing or ending at LZ77 phrase boundaries; verified

them by checking S ; and then used more range reporting to find the other
https://assignbuster.com/searching-and-indexing-genomic-databases-via-
kernelization/

 Searching and indexing genomic databases... – Paper Example Page 9

matches. We can obtain various time-space tradeoffs by compressing S and

use the methods discussed in Section 1 to extract the characters needed to

verify candidate matches. Claude and Navarro (2012) modified Kärkkäinen

and Ukkonen’s index to use a grammar-compressed encoding of S , and Kreft

and Navarro (2013) modified it to use the encoding of S produced by a

version of LZ77 they called LZ-End, which supports fast random-access reads

starting at phrase boundaries. Arroyuelo et al. (2012) and Do et al. (2014)

gave indexes based on LZ78 and RLZ, respectively, and Maruyama et al.

(2013) and Takabatake et al. (2014) gave indexes based on the edit-

sensitive parsing by Cormode and Muthukrishnan (2007) . Gagie et al.

(2014a) recently gave a version of Kärkkäinen and Ukkonen’s index that

uses a total of ???? (z log 2 n) bits and returns the locations of all P ’s occ

occurrences in S in ???? (m log m + occ log log n) time. These indexes

require no assumptions about the pattern.

Kärkkäinen and Sutinen (1998) gave an index based on a version of LZ77

that allows phrases to overlap by q − 1 characters, where q is a parameter. If

P has length exactly q , then their index returns the locations of all P ’s

occurrences in S in optimal ???? (m + occ) time. If we are given an upper

bound M on the pattern length at construction time, then even with

Kärkkäinen and Ukkonen’s original version, we need keep only a kernel of

the text and can use ???? (z log n + zM log σ) bits in total, where σ is the

size of the alphabet. We suspect this escaped investigation for so long

because it seemed too obvious and inelegant to be theoretically interesting,

and the need to index massive, highly repetitive datasets in practice has

https://assignbuster.com/searching-and-indexing-genomic-databases-via-
kernelization/

 Searching and indexing genomic databases... – Paper Example Page 10

become pressing only since the development of next-generation sequencing

methods.

The use of kernelization for indexing was eventually investigated by

Schneeberger et al. (2009) , although they did not present kernelization as a

separate process because their work was application-driven. As noted in

Section 1, they proposed that, given a database of genomes from the same

species, we index the common parts of the genomes only once for them all,

but we index the parts near variation sites for each genome. Wandelt et al.

(2013) and Danek et al. (2014) gave similar results, essentially using a

kernel based on the RLZ parse. Like Schneeberger et al., these authors

indexed the kernels using specific methods based on q -grams or seeds.

Danek et al.’s index for the database for the 1000 Genomes Project is the

first one to fit in the memory of a commodity personal computer. Ferrada et

al. (2014b) emphasized kernelization (albeit not under that name) in terms

of the LZ77 parse, which is more general and may give better compression,

and pointed out that we can use any index for approximate pattern matching

to store the kernel. One point they did not comment on, and which we hope

to have clarified in this paper, is that we can consider kernels based on LZ77,

LZ78, RLZ, other compression schemes, or possibly other algorithms entirely.

These kernels may be easier to compute when the database does not fit in

memory, or have other useful properties that make them preferable in some

situations. One interesting problem is how we can best maintain a dynamic

kernel for an expanding database. This could allow us to align reads against

a genomic database and then add the newly assembled genome, which

https://assignbuster.com/searching-and-indexing-genomic-databases-via-
kernelization/

 Searching and indexing genomic databases... – Paper Example Page 11

could be useful when dealing with mutating cancer genomes or changing

strains of a disease during an outbreak.

Conflict of Interest Statement
The authors declare that the research was conducted in the absence of any

commercial or financial relationships that could be construed as a potential

conflict of interest.

Acknowledgments
Many thanks to Fabio Cunial, Paweł Gawrychowski, Szymon Grabowski, Juha

Kärkkäinen, Veli Mäkinen, Gonzalo Navarro, Esa Pitkänen, Yasuo Tabei, and

Niko Välimäki, for helpful discussions, and to the anonymous reviewers for

their comments. Funding: The authors are funded by Academy of Finland

grants 268324, 258308 and 250345 (CoECGR).

References
Arroyuelo, D., Navarro, G., and Sadakane, K. (2012). Stronger Lempel-Ziv

based compressed text indexing. Algorithmica 62, 54–101. doi: 10.

1007/s00453-010-9443-8

Bille, P., Fagerberg, R., and Gørtz, I. L. (2009). Improved approximate string

matching and regular expression matching on Ziv-Lempel compressed texts.

ACM Trans. Algorithms 6: 3. doi: 10. 1145/1644015. 1644018

Bille, P., Landau, G. M., Raman, R., Sadakane, K., Satti, S. R., and Weimann,

O. (2011). “ Random access to grammar-compressed strings,” in

Proceedings of the 22nd Symposium on Discrete Algorithms (SODA)

https://assignbuster.com/searching-and-indexing-genomic-databases-via-
kernelization/

 Searching and indexing genomic databases... – Paper Example Page 12

(Philadephia: Society for Industrial and Applied Mathematics (SIAM)), 373–

389.

Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A., et

al. (2005). The smallest grammar problem. IEEE Trans. Inf. Theory 51, 2554–

2576. doi: 10. 1109/TIT. 2005. 850116

Claude, F., and Navarro, G. (2012). “ Improved grammar-based compressed

indexes,” in Proceedings of the 19th Symposium on String Processing and

Information Retrieval (SPIRE) (Berlin: Springer-Verlag), 180–192.

Cormode, G., and Muthukrishnan, S. (2007). The string edit distance

matching problem with moves. ACM Trans. Algorithms 3: 2. doi: 10.

1145/1186810. 1186812

Danek, D. A., Deorowicz, S., and Grabowski, S. (2014). Indexes of large

genome collections on a PC. PLoS ONE 9: e109384. doi: 10. 1371/journal.

pone. 0109384

Deorowicz, S., and Grabowski, S. (2011). Robust relative compression of

genomes with random access. Bioinformatics 27, 2979–2986. doi: 10.

1093/bioinformatics/btr505

Do, H. H., Jansson, J., Sadakane, K., and Sung, W. K. (2014). Fast relative

Lempel-Ziv self-index for similar sequences. Theor. Comp. Sci. 532, 14–30.

doi: 10. 1016/j. tcs. 2013. 07. 024

Farach, M., and Thorup, M. (1998). String matching in Lempel-Ziv

compressed strings. Algorithmica 20, 388–404. doi: 10. 1007/PL00009202
https://assignbuster.com/searching-and-indexing-genomic-databases-via-
kernelization/

 Searching and indexing genomic databases... – Paper Example Page 13

Ferrada, H., Gagie, T., Gog, S., and Puglisi, S. J. (2014a). “ Relative Lempel-

Ziv with constant-time random access,” in Proceedings of the 21st

Symposium on String Processing and Information Retrieval (SPIRE) (Berlin:

Springer-Verlag), 13–17.

Ferrada, H., Gagie, T., Hirvola, T., and Puglisi, S. J. (2014b). Hybrid indexes

for repetitive datasets. Philos. Trans. R. Soc. A 327, 2016. doi: 10. 1098/rsta.

2013. 0137

Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., and Puglisi, S. J.

(2014a). “ LZ77-based self-indexing with faster pattern matching,” in

Proceedings of the 11th Latin American Symposium on Theoretical

Informatics (LATIN) (Berlin: Springer-Verlag), 731–742.

Gagie, T., Gawrychowski, P., and Puglisi, S. J. (2014b). Faster approximate

pattern matching in compressed repetitive texts. J. Discrete Algorithms . doi:

10. 1016/j. jda. 2014. 10. 003

Gagie, T., Hoobin, C., and Puglisi, S. J. (2014c). “ Block graphs in practice,” in

Proceedings of the 2nd International Conference on Algorithms for Big Data

(ICABD) (Aachen: CEUR-WS. org), 30–36.

Gagie, T., Gawrychowski, P., and Puglisi, S. J. (2011). “ Faster approximate

pattern matching in compressed repetitive texts,” in Proceedings of the

22nd International Symposium on Algorithms and Computation (ISAAC)

(Berlin: Springer-Verlag), 653–662.

https://assignbuster.com/searching-and-indexing-genomic-databases-via-
kernelization/

 Searching and indexing genomic databases... – Paper Example Page 14

Kärkkäinen, J., and Sutinen, E. (1998). Lempel-Ziv index for q -grams.

Algorithmica 21, 137–154. doi: 10. 1007/PL00009205

Kärkkäinen, J., and Ukkonen, E. (1996). “ Lempel-Ziv parsing and sublinear-

size index structures for string matching,” in Proceedings of the 3rd South

American Workshop on String Processing (WSP) (Ottawa: Carleton University

Press), 141–155.

Karpinski, M., Rytter, W., and Shinohara, A. (1997). An efficient pattern-

matching algorithm for strings with short descriptions. Nordic J. Comput. 4,

172–186.

Kreft, S., and Navarro, G. (2013). On compressing and indexing repetitive

sequences. Theor. Comp. Sci. 483, 115–133. doi: 10. 1016/j. tcs. 2012. 02.

006

Kuruppu, S., Beresford-Smith, B., Conway, T. C., and Zobel, J. (2012).

Iterative dictionary construction for compression of large DNA data sets.

IEEE/ACM Trans. Comput. Biol. Bioinform. 9, 137–149. doi: 10. 1109/TCBB.

2011. 82

Kuruppu, S., Puglisi, S. J., and Zobel, J. (2010). “ Relative Lempel-Ziv

compression of genomes for large-scale storage and retrieval,” in

Proceedings of the 17th Symposium on String Processing and Information

Retrieval (SPIRE) (Berlin: Springer-Verlag), 201–206.

Kuruppu, S., Puglisi, S. J., and Zobel, J. (2011). “ Reference sequence

construction for relative compression of genomes,” in Proceedings of the

https://assignbuster.com/searching-and-indexing-genomic-databases-via-
kernelization/

 Searching and indexing genomic databases... – Paper Example Page 15

18th Symposium on String Processing and Information Retrieval (SPIRE)

(Berlin: Springer-Verlag), 420–425.

Larsson, N. J., and Moffat, A. (1999). “ Offline dictionary-based compression,”

in Proceedings of the Data Compression Conference (DCC) (Hoboken, NJ:

IEEE Press), 296–305.

Maruyama, S., Nakahara, M., Kishiue, N., and Sakamoto, H. (2013). ESP-

index: a compressed index based on edit-sensitive parsing. J. Discrete

Algorithms 18, 100–112. doi: 10. 1016/j. jda. 2012. 07. 009

Maruyama, S., and Tabei, Y. (2014). “ Fully online grammar compression in

constant space,” in Proceedings of the Data Compression Conference (DCC)

(Hoboken, NJ: IEEE Press), 173–182.

Rahn, R., Weese, D., and Reinert, K. (2014). Journaled string tree – a scalable

data structure for analyzing thousands of similar genomes on your laptop.

Bioinformatics 30, 3499–3505. doi: 10. 1093/bioinformatics/btu438

Rytter, W. (2003). Application of Lempel-Ziv factorization to the

approximation of grammar-based compression. Theor. Comp. Sci. 302, 211–

222. doi: 10. 1016/S0304-3975(02)00777-6

Schneeberger, K., Hagmann, J., Ossowski, S., Warthmann, N., Gesing, S.,

Kohlbacher, O. D., et al. (2009). Simultaneous alignment of short reads

against multiple genomes. Genome Biol. 10, R98. doi: 10. 1186/gb-2009-10-

9-r98

https://assignbuster.com/searching-and-indexing-genomic-databases-via-
kernelization/

 Searching and indexing genomic databases... – Paper Example Page 16

Takabatake, Y., Tabei, Y., and Sakamoto, H. (2014). “ Improved ESP-index: a

practical self-index for highly repetitive texts,” in Proceedings of the 13th

Symposium on Experimental Algorithms (SEA) (Berlin: Springer-Verlag), 338–

350.

Verbin, E., and Yu, W. (2013). “ Data structure lower bounds on random

access to grammar-compressed strings,” in Proceedings of the 24th

Symposium on Combinatorial Pattern Matching (CPM) (Berlin: Springer-

Verlag), 247–258.

Vyverman, M., Baets, B. D., Fack, V., and Dawyndt, P. (2012). Prospects and

limitations of full-text index structures in genome analysis. Nucleic Acids

Res. 40, 6993–7015. doi: 10. 1093/nar/gks408

Wandelt, S., and Leser, U. (2012). “ String searching in referentially

compressed genomes,” in Proceedings of the Conference on Knowledge

Discovery and Information Retrieval (KDIR) (SciTePress), 95–102.

Wandelt, S., Starlinger, J., Bux, M., and Leser, U. (2013). “ RCSI: scalable

similarity search in thousand(s) of genomes,” in Proceedings of the VLDB

Endowment , Vol. 6 (San Jose, CA: VLDB Endowment), 1534–1545. doi: 10.

14778/2536258. 2536265

Ziv, J., and Lempel, A. (1977). A universal algorithm for sequential data

compression. IEEE Trans. Inf. Theory 23, 337–343. doi: 10. 1109/83. 663496

https://assignbuster.com/searching-and-indexing-genomic-databases-via-
kernelization/

 Searching and indexing genomic databases... – Paper Example Page 17

Ziv, J., and Lempel, A. (1978). Compression of individual sequences via

variable-rate coding. IEEE Trans. Inf. Theory 24, 530–536. doi: 10. 1109/TIT.

1978. 1055911

https://assignbuster.com/searching-and-indexing-genomic-databases-via-
kernelization/

	Searching and indexing genomic databases via kernelization
	1. Introduction
	2. Compression with Random-Access Reading
	3. Searching
	4. Indexing
	Conflict of Interest Statement
	Acknowledgments
	References

