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1. Introduction 
The Human Genome Project took 13 years and three billion dollars to 

sequence a human genome, but the latest next-generation sequencing 

methods take only a few days and a few thousand dollars. With these 

methods, initiatives such as the 1000 Genomes Project and the 100, 000 

Genomes Project are now feasible. Advances in sequencing have far 

outstripped advances in computer processors and random-access memory, 

however, so it is increasingly challenging to make use of the data available. 

For example, while modern aligners can easily hold in memory the index for 

approximate pattern matching on a single human genome, they cannot 

handle thousands of human genomes. Schneeberger et al. (2009) proposed 

that we index the common parts of the genomes only once for them all, but 

we index the parts near variation sites for each genome. Ferrada et al. 

(2014b) suggested indexing the parts of all the genomes near boundaries 

between phrases in the LZ77 parse of the database. This is more general and

may give better compression but requires the LZ77 parse, which is difficult 

to compute when the database does not fit in memory. Wandelt et al. (2013)

proposed using a modified parse in which phrases must occur in a reference 

genome, which is easier to compute. (When papers have appeared in 

journals we cite those versions, although their chronological order may differ 

from that of previous versions.) Danek et al. (2014) recently showed that 

with this general approach we can store an index for approximate pattern 

matching on the database from the 1000 Genomes Project, in the memory of

a commodity personal computer. This has so far not been possible with 

competing approaches, as surveyed by Vyverman et al. (2012) . 

https://assignbuster.com/searching-and-indexing-genomic-databases-via-
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When we are not given an upper bound on the pattern length, we can use 

one of the competing indexes that does not require such a bound or we can 

scan, with an online pattern-matching algorithm, the reference genome, and 

the parts of the other genomes near phrase boundaries. Wandelt and Leser 

(2012) and Rahn et al. (2014) proposed the latter idea specifically for 

approximate pattern matching in genomic databases, but the general 

approach has a 20-year history in the field of compressed pattern matching. 

In this paper, we survey that history and relate it to current research: in 

Section 2 we discuss some relevant data compression schemes and how 

they have been augmented to support fast random-access reading; in 

Section 3 we discuss how they have been used to speed up pattern-

matching; in Section 4 we discuss how they have been used in compressed 

indexing. While writing this survey, we realized that scanning or indexing 

only parts of the database and then mapping the solution for those parts 

onto a solution for the whole database, is like kernelization in parameterized 

complexity (We note that kernels in parameterized complexity bear no 

relation to operating system kernels nor to kernels in machine learning.). We

emphasize this perspective because we feel that computing a pattern-

matching kernel is an interesting problem in itself, regardless of how we 

process it later, and deserving of further study. Of course, the nature and 

even the existence of the kernel depend on the problem we are trying to 

solve. 

2. Compression with Random-Access Reading 
In general, the best compression of highly repetitive datasets is achieved 

with the LZ77 algorithm by Ziv and Lempel (1977) . Suppose S [1, …, n ] is a 
https://assignbuster.com/searching-and-indexing-genomic-databases-via-
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string with S [ n ] = $, which is an end-of-file symbol that does not occur 

elsewhere in S . LZ77 works by parsing S into phrases such that, for each 

phrase S [ i , …, j ], S [ i , …, j − 1] occurs in S [1, …, j − 2] but S [ i , …, j ] 

does not occur in S [1, …, j − 1]; that phrase is stored as a triple consisting 

of a pointer to S [ i , …, j ]’s first occurrence in S (which is called the phrase’s

source), j − i , and S [ j ]. The LZ77 encoding of S takes ???? ( z log n ) bits, 

where z is the number of phrases in the parse. For example, in the following 

verses vertical lines indicate phrase boundaries: 

9| 9-| b| o| t| tl| e| s|-o| f|-be| er|-on|-t| h| e-| w| a| ll|-9| 9-bottles-of-beer- 

I| f-o| n| e-o| f-t| ho| se|-bottles-s| hou| ld|-h| ap| pe| n-to|-f| all- 

98|-bottles-of-beer-on-the-wall- 

98|-bottles-of-beer-on-the-wall-98-bottles-of-beer- 

I| f-one-of-those-bottles-should-happen-to-fall- 

97|-bottles-of-beer-on-the-wall … 

(We have displayed the verses with linebreaks to increase readability, but we

have not considered them while computing the parse.) Although these 

verses may be annoyingly similar by the standards of natural language, they 

are far less similar than human genomes. Indeed, most repetitive biological 

datasets are much too similar (as well as much too large) for us to use them 

as informative examples. 

https://assignbuster.com/searching-and-indexing-genomic-databases-via-
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One drawback of LZ77 compression is that reading a character in a 

compressed string can be very slow. Rytter (2003) and Charikar et al. (2005) 

showed how we can turn that parse into a balanced straight-line program 

(SLP) for S with ???? ( z log n ) rules. An SLP for S is a context-free grammar 

in Chomsky normal form that generates S and only S ; it is balanced if the 

height of each subtree in the parse tree is logarithmic in that subtree’s size. 

It follows from Rytter’s and Charikar et al.’s results that we can store S in

???? ( z log 2 n ) bits and support random-access reading of any substring of 

S with length l in ???? (log n + l ) time. Verbin and Yu (2013) showed that 

this is nearly optimal in the worst case. Bille et al. (2011) showed how, given 

even an unbalanced SLP for S with r rules, we can store S in ???? ( r log n ) 

bits and support random-access reading in ???? (log n + l ) time. Rytter’s, 

Charikar et al.’s, and Bille et al.’s constructions are not practical, but there 

are practical grammar-based compressors, such as those by Larsson and 

Moffat (1999) and Maruyama and Tabei (2014) . As far as we know, block 

graphs by Gagie et al. (2011) and Gagie et al. (2014c) are the most practical 

grammar-like representations for random-access reading. The LZ78 

algorithm by Ziv and Lempel (1978) does not compress repetitive datasets 

as well as LZ77, but the LZ78 encoding of S can easily be augmented to 

support random-access reading in ???? (log log n + l ) time. LZ78 also works 

by parsing S into phrases but then each phrase must extend a previous 

phrase plus one character. Because of this property, the LZ78 encoding of S 

has Ω ( n ) phrases, even when S = a n . 

In the example above, the first verse contains many phrase boundaries but 

the second verse contains only three. Kuruppu et al. (2010) proposed that, 
https://assignbuster.com/searching-and-indexing-genomic-databases-via-
kernelization/
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given a set of similar strings (or one string that can easily be divided into 

similar substrings), we store the first string in plain text as a reference and 

compress the others with a version of LZ77 that restricts phrases’ sources to 

occur in the reference. They called this scheme Relative Lempel–Ziv (RLZ) 

and showed it compresses genomic databases very well in practice (although

it too uses Ω ( n ) phrases, even when S = a n ) and there are several 

implementations of this approach, such as those by Deorowicz and 

Grabowski (2011) , Kuruppu et al. (2012) , and Ferrada et al. (2014a) . Even 

when there is no obvious reference, Kuruppu et al. (2011) showed we can 

often build one by sampling the dataset: intuitively, if a substring is common 

then it is likely to appear in our sample, and if it is not then we lose little by 

not compressing it well; this can be formalized using results about SLPs. 

3. Searching 
Farach and Thorup (1998) observed that the first occurrence of any pattern 

P [1, … , m ] in S must cross or end at a phrase boundary in the LZ77 parse. 

Kärkkäinen and Ukkonen (1996) showed how, if we already know the 

locations of P ’s occurrences in S that cross or end at phrase boundaries, 

then we can deduce the locations of all its other occurrences from the 

structure of the parse. By the same arguments, LZ78 also has these 

properties and ( Karpinski et al., 1997 ) simultaneously proved similar results

for SLPs. Bille et al. (2009) observed that any substring of S within edit 

distance k of P (i. e., any of P ’s approximate matches) has length at most m 

+ k , and any such substring that does not cross or end at an LZ78 phrase 

boundary must be an exact copy of an earlier one that does. They gave an 

algorithm for approximate pattern matching in LZ78 strings that works by 
https://assignbuster.com/searching-and-indexing-genomic-databases-via-
kernelization/
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extracting the m + k and m + k − 1 characters before and after each LZ78 

phrase boundary, respectively, using a technique similar to those discussed 

in Section 2; scanning the resulting substrings with any online algorithm for 

approximate pattern matching in uncompressed strings; and then deducing 

the locations of the other approximate matches from the structure of the 

parse. 

Bille et al. (2011) extended this approach to show how we can find all P ’s 

approximate matches in S from an SLP for S . Recently, Gagie et al. (2014b) 

extended it further to show how we can preprocess the LZ77 parse of S in

???? ( z log n ) time such that later, given P and k , we can find all P ’s occ 

approximate matches in ???? ( z min( mk , m + k 4 ) + occ ) time. Their 

algorithm works by extracting the m + k and m + k − 1 characters before 

and after each LZ77 phrase boundary, respectively, and then continuing as 

with the algorithm by Bille et al. (2009) . The set of substrings we extract is 

like a kernel in parameterized complexity: the total length of the substrings 

can be much smaller than n , but a solution on them can quickly be mapped 

to a solution on all of S . For our example from Section 2 with m = 4 and k = 

1, the kernel is: 

99-bottles-of-beer-on-the-wall-99-bo 

eer-If-one-of-those-bottles-should-happen-to-fall-98-bot 

ll-98-bot 

eer-If-on 

https://assignbuster.com/searching-and-indexing-genomic-databases-via-
kernelization/
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ll-97-bot … 

If we want a kernel consisting of only a single string, we can concatenate the

substrings with k + 1 copies of $ between each consecutive pair. Notice that 

if we are careful, we can avoid scanning the fourth substring “ eer-If-on,” 

since it occurs in the second substring. 

We do not wish to leave the impression that kernelization is the only 

approach used in compressed pattern matching, nor even that the papers 

mentioned above are the only ones that use it. We have focused on those 

papers because we feel they are the most relevant to the practical 

bioinformatics papers by Wandelt and Leser (2012) and Rahn et al. (2014) 

mentioned in Section 1. Those authors were apparently unaware of the field 

of compressed pattern matching and re-invented kernelization specifically 

for approximate pattern matching in genomic databases, with kernels based 

on RLZ instead of LZ77, LZ78, or SLPs. This may be because the earlier 

researchers using kernelization for pattern matching did not perform 

convincing experiments on large enough datasets, publicize their ideas in 

interdisciplinary forums or implement their ideas in tools usable by other 

scientists. 

4. Indexing 
Kärkkäinen and Ukkonen (1996) gave the first LZ-based index, which 

supported exact pattern matching and stored S separately and 

uncompressed. They used Patricia trees and range reporting to find a set of 

candidate matches crossing or ending at LZ77 phrase boundaries; verified 

them by checking S ; and then used more range reporting to find the other 
https://assignbuster.com/searching-and-indexing-genomic-databases-via-
kernelization/
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matches. We can obtain various time-space tradeoffs by compressing S and 

use the methods discussed in Section 1 to extract the characters needed to 

verify candidate matches. Claude and Navarro (2012) modified Kärkkäinen 

and Ukkonen’s index to use a grammar-compressed encoding of S , and Kreft

and Navarro (2013) modified it to use the encoding of S produced by a 

version of LZ77 they called LZ-End, which supports fast random-access reads

starting at phrase boundaries. Arroyuelo et al. (2012) and Do et al. (2014) 

gave indexes based on LZ78 and RLZ, respectively, and Maruyama et al. 

(2013) and Takabatake et al. (2014) gave indexes based on the edit-

sensitive parsing by Cormode and Muthukrishnan (2007) . Gagie et al. 

(2014a) recently gave a version of Kärkkäinen and Ukkonen’s index that 

uses a total of ???? ( z log 2 n ) bits and returns the locations of all P ’s occ 

occurrences in S in ???? ( m log m + occ log log n ) time. These indexes 

require no assumptions about the pattern. 

Kärkkäinen and Sutinen (1998) gave an index based on a version of LZ77 

that allows phrases to overlap by q − 1 characters, where q is a parameter. If

P has length exactly q , then their index returns the locations of all P ’s 

occurrences in S in optimal ???? ( m + occ ) time. If we are given an upper 

bound M on the pattern length at construction time, then even with 

Kärkkäinen and Ukkonen’s original version, we need keep only a kernel of 

the text and can use ???? ( z log n + zM log σ) bits in total, where σ is the 

size of the alphabet. We suspect this escaped investigation for so long 

because it seemed too obvious and inelegant to be theoretically interesting, 

and the need to index massive, highly repetitive datasets in practice has 

https://assignbuster.com/searching-and-indexing-genomic-databases-via-
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become pressing only since the development of next-generation sequencing 

methods. 

The use of kernelization for indexing was eventually investigated by 

Schneeberger et al. (2009) , although they did not present kernelization as a 

separate process because their work was application-driven. As noted in 

Section 1, they proposed that, given a database of genomes from the same 

species, we index the common parts of the genomes only once for them all, 

but we index the parts near variation sites for each genome. Wandelt et al. 

(2013) and Danek et al. (2014) gave similar results, essentially using a 

kernel based on the RLZ parse. Like Schneeberger et al., these authors 

indexed the kernels using specific methods based on q -grams or seeds. 

Danek et al.’s index for the database for the 1000 Genomes Project is the 

first one to fit in the memory of a commodity personal computer. Ferrada et 

al. (2014b) emphasized kernelization (albeit not under that name) in terms 

of the LZ77 parse, which is more general and may give better compression, 

and pointed out that we can use any index for approximate pattern matching

to store the kernel. One point they did not comment on, and which we hope 

to have clarified in this paper, is that we can consider kernels based on LZ77,

LZ78, RLZ, other compression schemes, or possibly other algorithms entirely.

These kernels may be easier to compute when the database does not fit in 

memory, or have other useful properties that make them preferable in some 

situations. One interesting problem is how we can best maintain a dynamic 

kernel for an expanding database. This could allow us to align reads against 

a genomic database and then add the newly assembled genome, which 

https://assignbuster.com/searching-and-indexing-genomic-databases-via-
kernelization/



 Searching and indexing genomic databases... – Paper Example  Page 11

could be useful when dealing with mutating cancer genomes or changing 

strains of a disease during an outbreak. 
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