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Introduction 
We address three aspects of neuroscience, each for long being largely 

overshadowed by the Neuron Doctrine's hegemony ( Bullock et al., 2005 ): 

Neuroglia (including here also the systems of neuronal and glial Gap 

Junctions), Extracellular Fluid in neural tissue (“ Brain-Cell 

Microenvironment”: Nicholson, 1980 ), and neuromodulatory processes. Our 

leading notion is that the functional state of neurons, individually and in 

assemblies, is determined by a set of variables (ion conductances and 

membrane currents, thresholds for neural discharges, synaptic potentials, 

ion channel kinetics, etc.), whose values at any one time are to varying 

degrees affected by interactions and interdependencies of these three 

components, locally as well as globally, and at largely different time scales. 

In the section “ Background,” we review essential aspects of each of these 

components separately. This is to provide the basis for our principal 

objective to analyze in the “ Discussion” section the global dynamics of the 

complex system these components jointly compose, covering a wide range 

of temporal scales that is characteristic of Multifractals. Accordingly, self-

similarity and the absence of any specific time scale ensure instant and 

automatic adaptation to neural impulse traffic over a wide range of 

frequencies. 

Background 
Gap Junctions and Neuroglia 
Diffusive coupling by Gap Junctions between various interneuron types and 

neuroglia from cells in neocortex is now firmly established ( Simon et al., 

2005 ), as is their virtually boundless distribution ( Fukuda, 2007 ). 
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Simulation studies determined their role for supporting synchronous 

oscillations ( Traub et al., 1999 ; Lewis and Rinzel, 2000 ), and identified 

complementary interrelations with chemical synapses in interneuronal 

networks ( Kopell and Ermentrout, 2004 ). Electrical coupling between axons 

is also amply documented ( Debanne and Rama, 2011 ), providing the 

opportunity for fast and efficient transfer of action potentials for generating 

highly coherent output pathways of neuronal networks. 

Neurochemists generated an avalanche of data, promoting Astrocytes (

Verkhratsky and Butt, 2007 ), one of the members of the macro-glia family, 

to full partnership with pre- and postsynaptic neurons in the “ Tripartite 

Synapse” ( Araque et al., 1999 ). This has become a fertile concept for 

characterizing the complex and reciprocal patterns of interactions between 

astrocytes and neurons, reviewed by Araque and Navarrete (2010) and 

Halassa and Haydon (2010) . The dynamics of these interactions is sustained

by the astrocytes expressing receptors for virtually all important 

neurotransmitters ( Kettenmann and Steinhauser, 2005 ), providing multiple 

opportunities for engaging neuron-astrocyte complexes at many target 

points ( Fields and Stevens-Graham, 2002 ; Auld and Robitaille, 2003 ; Perea 

et al., 2009 ). A prevalent feature of astrocytes' role is their participation in 

the dynamics of calcium in extracellular space on two different space and 

time scales. For local short-term interaction, astrocytes (although not 

electrically excitable) respond to glutamate liberated at presynaptic 

junctions with calcium spikes which, in turn, release additional glutamate 

and ATP to neighboring neurons ( Smith and Pereda, 2003 ) for integrating 

coincident activity from different dendrites in the same tissue volume (
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Parpura and Haydon, 2000 ; Bezzi et al., 2001 ). Furthermore, activity related

changes of calcium levels within astrocytes contribute to mobilizing various 

transmitters and transmission-related substances ( Perea and Araque, 2010

). Globally and on longer time scales, intercellular propagation of Calcium 

waves ( Cornell-Bell et al., 1990 ; Charles, 1998 ; Harris and Timofeeva, 2010

) can support long-range signaling ( Giaume and Venance, 1998 ; Kuga et al.,

2011 ). Recent evidence from the family of connexins suggest that the 

astrocyte system constitutes a network of communicating cells with definite 

spatial organization ( Pereira and Furlan, 2010 ) where intercellular 

communication is controlled by endogenous signals ( Giaume and Liu, 2011

). 

The dynamics of neuron glia interaction is complicated by two 

circumstances: one, due to activity-dependent morphological changes of 

astroglia processes ending at synaptic regions ( Hirrlinger et al., 2004 ; 

Theodosis et al., 2008 ; Fellin, 2009 ); and, the second, due to a complex 

anatomical organization of spatial non-overlapping domains with limited 

interdigitation of processes from adjacent cells ( Bushong et al., 2002 ; 

Ogata and Kosaka, 2002 ; Halassa et al., 2007 ). Each domain encompasses 

some 2 million synapses in human brain ( Oberheim et al., 2008 ) as an area 

of the neuropil that is controlled by a single astrocyte. Moreover, parts of this

territory can be controlled autonomously by specialized astrocyte 

microdomains of filipodia with distinct motility ( Volterra and Meldolesi, 2005

). Groups of neurons are also enwrapped by a layer of lattice-like material: 

this Perineuronal Net forms stable complexes surrounding synapses (

Faissner et al., 2010 ; Kwok et al., 2011 ), seemingly affecting short-term 
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synaptic plasticity ( Frischknecht et al., 2009 ). On a modular basis, 

computational simulations of different manifestations of astrocyte-neuron 

interactions contribute to gaining some insight into their functions ( Nadkarni

et al., 2008 ; Goldberg et al., 2010 ; De Pitta et al., 2011 ). On the basis of 

theoretical arguments, Mitterauer (2012) attributed a structural organization 

in the form of logical functions to the tripartite synapse and astrocyte 

domain organization, suggesting its role in the economy of normal and 

pathological brain functions ( Mitterauer, 2010 ; Mitterauer and Kofler-

Westergren, 2011 ). 

Brain-Cell Microenvironment (Extracellular Fluid) 
Extracellular fluid's coming-of-age is closely associated with the work of 

Kuffler and Nicholls (1966) that identified the diffusion of ions and various 

neuroactive substances in intercellular clefts of neural tissue. This theme 

was again taken up by Vizi and Labos (1991) , documenting non-synaptic 

interaction in nervous tissue, subsequently discussed in detail by Agnati et 

al. (1995) and Zoli and Agnati (1996) , suggesting to view intercellular 

communication among cells in the nervous system in two complementary 

reference frames, one as “ wiring” transmission, the other as “ volume” 

transmission: the former being transmission of excitation between 

synaptically connected neurons, the latter attributing diffusive distribution of

various ions, neuropeptides, and neurotransmitters to extracellular fluid 

surrounding neurons. A wealth of experimental data, notably with the effects

of ion accumulation in the extracellular fluid following tetanic nerve activity 

corroborated this conjecture ( Frankenhaeuser and Hodgkin, 1956 ; Egelman 

and Montague, 1998 ). In a computational model of a Reaction-Diffusion 
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system, Werner (2005) demonstrated that tetanic stimulation of a group of 

neurons causes extracellular accumulation of Calcium ions which induces 

spreading activity patterns in surrounding unstimulated neurons. More 

recently, Froehlich et al. (2006) showed that diffusive modulation of 

extracellular potassium concentration induces state transitions in neurons 

with distinct changes in oscillatory patterns. Changes of diffusive coupling in 

neural networks can change normal, and precipitate pathological, activity 

patterns ( Ullah et al., 2009 ; Durand et al., 2010 ). The relevance of non-

synaptic diffusion neurotransmission was further extended and refined by 

Bach-Y-Rita (1995) . However, diffusion of neuroactive substances is slowed 

down by geometric tortuosity and viscosity of macromolecules in 

extracellular space ( Rusakov and Kullmann, 1998 ; Hrabe et al., 2004 ). By 

changing their geometric shape, dendritic spines can dynamically regulate 

diffusion in their vicinity ( Biess et al., 2007 ). 

Neuromodulatory Processes 
The notion of Neuromodulation originated with a diversity of observations 

that could not be accounted for within the established principles of synaptic 

transmission with transmitter substances exclusively acting locally at 

synaptic sites ( Kaczmarek and Levitan, 1987 ; Katz, 1999 ). For present 

purposes, we suggest reserving the term “ Neuromodulation” to designate 

the composite system of all processes affecting synaptic transmission, in 

distinction from individual neuromodulatory processes in the narrower sense,

as listed in the following. The foundational insights on operational principles 

of neuromodulation originated with investigating the polyvalence of neural 

network functions in crustaceans. A succession of comprehensive reviews by 
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Getting (1989) , Harris-Warrick and Marder (1991) , and Marder and 

Calabrese (1996) , summarize the repertoire of neuronal functions 

attributable to the modulating action of extrasynaptic processes on synaptic 

transmission. They include effects on synaptic efficacy and presynaptic 

transmitter release, intrinsic neuronal properties, changes of network 

connectivity, coupling of neural oscillators, and filtering sensory input, and 

spike-time dependent plasticity ( Pawlak et al., 2010 ). All known 

neurotransmitter substances are involved in these effects, as are a multitude

of peptides ( Nusbaum, 2002 ; Nassel, 2009 ). 

Reports of neuromodulatory effects in higher functions of vertebrates 

followed the crustacean work in rapid sequence: Hasselmo and associates 

produced evidence for forebrain cholinergic neuromodulation of Cognition 

(for review see: Hasselmo and Sarter, 2011 ). Ascending brain stem 

neuromodulatory systems (NMS) of vertebrate brains became implicated in 

learning mechanisms ( Doya, 2002 ), in adaptive behavior ( Krichmar, 2008 ),

and in emotional control processes (for a recent example, see Cools et al., 

2007 ). Central pattern generators are subject to neuron modulation in 

vertebrates as they are in invertebrates ( Dickinson, 2006 ). In its totality, 

the accumulated observational evidence mandates expanding the classical 

view of a relatively static neuronal “ wiring diagram” to a dynamic system 

subject to ongoing tuning and reconfiguring by a biochemical network of 

modulators, effective over a wide range of temporal, and spatial scales (

Brezina, 2010 ). Combining experimental observations with computational 

simulations reveals the combinatorial richness of the modulatory network for
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generating functionally appropriate and adaptive behavior ( Brezina et al., 

2000 ; Proekt et al., 2004 ; Stern et al., 2007 ). 

The multitude of phenomena described as neuromodulation fall into two 

fundamentally different categories ( Marder and Thirumalai, 2002 ): intrinsic 

neuromodulation is the condition of the modulator being released by some of

the same neurons that are also part of the circuit they modulate ( Katz and 

Frost, 1996 ). Hansson and Rönnbäck (1994) review several instances of 

intrinsic modulation of synaptic transmission by astrocytes, related to 

release and uptake of glutamine at synaptic sites. Events at the “ Tripartite 

Synapse” fall also in this category. Extrinsic modulation, on the other hand, 

consists in activity of functionally distinct system processes outside of and 

parallel to the actual synaptic activity, relying on the storage and transport 

of neuroactive substances in the extracellular fluid compartment. Most of the

effects of neuroglia must be attributed to this category. Beyond regulating 

merely one synaptic region, extrinsic modulation can globally organize 

ensembles of circuits, and usually works at a time course up to several 

seconds rather than the msec's of synaptic actions of intrinsic modulation. 

Discussion and Conclusion 
In the following discussion, we will refer to the totality of the interacting 

complex of glia, extracellular fluid and the processes of neuromodulation as 

NMS. For formulating ideas about NMS, it must of course not be overlooked 

that neurons themselves (individually and as assemblies) are integral 

participants, active by contributing to the flux of neuroactive substances in 

extracellular space, and passive by being affected by them. Since our aim is 

to characterize the function of NMS at a global level, we take a coarse-
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grained, non-reductive perspective. This sets our approach apart from 

studies of stochastic synaptic processes at the molecular level ( Ribrault et 

al., 2011 ) and the multiscale analysis of molecular processes at cellular 

levels (for a recent overview: see Holcman, 2012 ). 

We make the biologically plausible assumption that each process in the 

chain of neuromodulatory events can be considered a chemical rate process 

with exponential decay. Relaxation rates vary over at least a thousand-fold 

range: from milliseconds at the liberation of transmitter substances at 

intrinsic modulation, to many seconds of chemically mediated astrocyte 

network reconfigurations and propagating calcium waves, with the numerous

extrinsic modulatory processes exhibiting intermediate rates. This situation 

invites applying the observation of Hausdorff and Peng (1996) that systems 

presenting time series with widely differing scales of component regulatory 

mechanisms summate to a system's power-law (1/f) scaling, suggestive of its

fractal character. Although there is no definitive mathematical proof 

presently available that time-scale free functions emerge from superposition 

of independent relaxation processes, there exists a range of physical 

mechanisms that do in fact show such micro- to macroscopic conversion, 

generally in the context of fractal time series ( Marom, 2010 ). Moreover, 

numerical analyses of Montroll and Shlesinger (1982) established that 

macroscopic scale-free functions emerge, provided the independent 

microscopic relaxation processes are of sufficiently large variance, as they 

are in NMS. This principle was subsequently applied by Anderson (2001) to 

ascertain the power-law dependency as an emergent property of systems 

that contain several exponentially decaying traces and was further extended
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by Fusi et al. (2005) and Drew and Abbott (2006) to include cascading 

exponential processes, the latter for sensory adaptation. However, NMS 

contain too many unknown rate constants to attempt numerical simulation 

and determination of a power law exponent. Thus, we need to confine the 

discussion to the exposition of plausible principles and analogies. 

Placing the function of NMS into the domain of fractal time series allows 

gaining significant insights into the dynamic properties. In the first place, the

scale-invariance is identified as the property of relating the behavioral 

elements of NMS in time across multiple time scales. This is a characteristic 

empirical feature of a large number of complex physiological phenomena (

West, 2010 ). It implies the global system's capacity for linking actions 

across many time different scales of the constituent processes: there is no 

privileged time scale, and the system's temporal performance is self-similar 

at any scale. This property endows the system with the ability to respond 

adaptively to perturbations (external events) over a wide range of their 

temporal patterns, and enables adaptation to impinging neural impulse 

trains that vary unpredictably over a wide range of time scales ( Werner, 

2010 , 2011 ). However, if the special formal properties of self-similarity, etc.

are not present, then what we are left with is a collection of processes on 

multiple time scales, which can therefore respond to perturbations on 

various time scales individually, but not necessarily as a coherent system. 

In the application cited in the foregoing, the systems were sufficiently small 

that power-laws with only one exponent were considered adequate. Hence, 

they fall into the category of Monofractals. Granting, however, the 

plausibility of the suggested approach, we consider it necessary to introduce 
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a refinement: characteristic time scales of the NMS component processes 

known to extend over a thousand fold range (as stated earlier) render fitting 

a power-law function with only one exponent unlikely. Accordingly, several 

power-functions with different exponents, each covering a section of the 

entire spectrum of scales, are required. This places NMS into the category of 

Multifractals ( Stanley and Meakin, 1988 ; Mandelbrot, 1999 ), commonly 

thought indispensable for very large systems (for instance: Geophysics: 

Mandelbrot, 1999 ), but also successfully applied in numerous biological 

systems ( West, 2010 ; West and Grigolini, 2010 ). This underscores the wide

range of temporal scales to which systems with fractal characteristic can 

successfully adapt ( Werner, 2010 ). 

A Final Thought 
Given the function NMS are to satisfy the requirements stipulated in the 

foregoing, it is from an engineering point of view surely extremely clumsily 

designed, with many redundancies and duplications of functions. Why is this 

so? It gives the impression that NMS in the present state may represent 

stages, one stage superimposed on the other as if to attain a progressively 

higher degree of robustness and stability for assuring secure contact with an 

ever-changing and unpredictable environment: perhaps many stages of 

consecutive “ tinkering”; yet, seemingly preserving modular semi-autonomy.

Admittedly, in this first perspective the components of NMS are only 

outlined. Their interactions must be formally elaborated in further 

investigations. 
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