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Introduction 
Through his experiments on pea plants, Gregor Mendel (1866) realized that 

some traits are dominant over others (for example “ round peas” were 

dominant over “ wrinkled peas”). In Mendel's own words: “ As a rule, hybrids 

do not represent the form exactly intermediate between the parental 

strains… Those traits that pass into hybrid association entirely or almost 

entirely unchanged, thus themselves representing the traits of the hybrid, 

are termed “ dominating,” and those that become latent in the association, “

recessive””. Shortly after the rediscovery of Mendel's rules, it was observed 

that, in some cases, the addition of the individual action of genes could not 

explain the mode of inheritance, and Bateson (1909) coined the term “ 

epistasis” to describe the cases in which the actions of two or more genes 

interact. A distinction must be drawn between biological (functional) genetic 

effects that correspond to the Mendelian definition (i. e., dominance means 

that the heterozygote value is higher or lower than the mean of homozygous

genotypes) and statistical (population or weighted) effects which depend on 

allelic frequencies. In the latter, the relevant issue is the contribution of non-

additive effects to genetic variance. Some authors argue that non-additive 

genetic effects may be a general phenomenon whose understanding is 

important for gaining more knowledge on the nature of quantitative traits, 

but whose contribution to variance is negligible ( Crow, 2010 ). 

From the perspective of quantitative genetics, Fisher (1918) conceived the 

infinitesimal model which postulates that a very large number of unlinked 

genes control the genetic variation of quantitative traits. He described the 

resemblance between relatives in a pure additive model which was quickly 
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extended to incorporate dominance ( Fisher, 1918 ; Wright, 1921 ). 

Resemblance between relatives including epistatic effects of second and 

higher order was also described ( Cockerham, 1954 ; Kempthorne, 1954 ). 

However, whilst the formulation of the infinitesimal model in the additive 

context is evident, its interpretation is not clear when non-additive effects 

are included ( Barton et al., 2017 ). 

The main goal of animal or plant breeding is to identify, select and mate the 

best individuals of a breeding stock in order to maximize performance in 

future generations ( Falconer and McKay, 1996 ; Bernardo, 2010 ). The 

procedure for computing the breeding values (genetic evaluation) of 

candidates for selection plays a crucial role. Traditionally, these methods use

phenotypic and genealogical information, such as the selection index ( Hazel,

1943 ) or the Best Linear Unbiased Predictor ( Henderson, 1973 ) and rely on 

the foundations of the infinitesimal model ( Fisher, 1918 ). 

Nevertheless, non-additive genetic effects have been ignored in the genetic 

evaluation of livestock for several reasons: (i) the lack of informative 

pedigrees, such as large full-sib families; (ii) the calculations involved are 

more complex; (iii) the fact that statistical additive variance captures 

biological dominance or higher order interaction effects ( Hill, 2010 ); and, 

(iv) the difficulty in using dominant values in practice (mate allocation). As a 

consequence, estimates of non-additive genetic variances are scarce in 

livestock populations ( Misztal et al., 1998 ; Nguyen and Nagyné-Kiszlinger, 

2016 ). 
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Genomic Selection 
Since the late 80s and 90s, developments in molecular genetics resulted in a

set of neutral molecular markers, such as microsatellites, that were 

commonly used to detect QTL (Quantitative Trait Loci) in almost all livestock 

populations. The objective of those studies was to identify polymorphic 

markers or genes associated with phenotypic variation of traits of interest 

( www. animalgenome. org/ QTL), with the ultimate goal of using them in 

Marker or Gene Assisted Selection ( Dekkers, 2004 ). However, these 

strategies became obsolete with the advent of dense genotyping devices (

Gunderson et al., 2005 ) that provided a very large amount of SNP (Single 

Nucleotide Polymorphism) and that allowed the development of genomic 

selection (GS) models ( Meuwissen et al., 2001 ). 

Genomic selection has become a very successful strategy for the prediction 

of the breeding values of candidates for selection and has revolutionized the 

field of animal breeding over the past decade. The basic idea of GS is to 

develop the following linear model: 

y i = μ + ∑ j = 1 n t i j a j + e i 

The model explains the phenotypic data of m individuals ( y i ) with i = 1 … 

m (or transformations of data, such as daughter yield deviations) by the 

effects associated with a very large number ( n ) of SNP ( a j ) with j = 1 … n .

Moreover, t ij is the genotypic configuration (coded additively, e. g., Falconer 

and McKay, 1996 ) of the ith individual and for the jth SNP (0, 1, and 2 for A 1

A 1 , A 1 A 2 , and A 2 A 2 genotypes, respectively), and e i is the residual. 

Furthermore, the prediction of individual breeding values ( u i ^ ) of the 
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candidates for selection can be calculated a posteriori from marker effect 

estimates as u i ^ = ∑ j = 1 n t i j a j ^ . 

A significant limitation for implementation is that most genomic evaluation 

models suffer the statistical problem of a larger number of parameters ( n ) 

that must be estimated from a smaller number of data ( m ). The most 

common method employed for resolving this problem is the use of some 

type of regularization of SNP marker effects ( Gianola, 2013 ). Several 

approaches have been suggested, ranging from a simple Gaussian 

regularization ( Meuwissen et al., 2001 ) to more complex models that 

involve t shaped ( Meuwissen et al., 2001 ), double exponential ( De los 

Campos et al., 2009b ), mixtures of distributions ( Meuwissen et al., 2001 ; 

Habier et al., 2011 ; Erbe et al., 2012 ), or non-parametric or semi-parametric

approaches ( Gonzalez-Recio et al., 2014 ). The predictive ability of all these 

approaches depends on the genetic architecture of the traits being analyzed 

( Daetwyler et al., 2010 ), although for polygenic traits, all approaches offer 

similar results ( Wang et al., 2015 ). 

An interesting property of the assumption of a Gaussian prior distribution for 

marker effects (Random Regression BLUP—RR-BLUP) is that the GS model 

can be reformulated in terms of individual (animal) effects, using the 

equations of the Henderson's classic Mixed Model that provide breeding 

values for all individuals, including candidates for selection (Genomic BLUP 

or GBLUP). The only difference with standard mixed model equations is that 

the numerator relationship matrix (A) is replaced by the genomic relationship

matrix (G), as defined by VanRaden (2008) . In addition, this approach can 

be extended for the genetic evaluation of non-genotyped individuals in the 
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Single-Step approach ( Aguilar et al., 2010 ), facilitating the integration of GS

procedures in the genetic evaluation of candidates for selection in most 

livestock breeding programmes. More recently, Fernando et al. (2014) 

described a Bayesian procedure that can also simultaneously evaluate 

genotyped and non-genotyped individuals and allows the use of alternative 

regularization procedures. Nevertheless, computational costs are markedly 

higher with the Bayesian model than with the Single-Step approach. 

Despite the regularization procedure, the genomic evaluation methods are 

based on the evaluation of marker substitution effects through the 

construction of the covariates ( t ij ) or theGmatrix (above). The additive (or 

breeding) values capture a large part of dominant and higher-order 

interaction effects ( Hill et al., 2008 ; Crow, 2010 ; Hill, 2010 ). Substitution 

effects that capture dominance and epistatic functional effects are not 

necessarily stable across generations or populations due to changes in allelic

frequencies. In any case, only additive values (substitution effects) 

contribute to breeding values and are therefore expressed in the next 

generation. However, estimates of non-additive genetic effects may be of 

relevance because: (i) they may contribute to increasing the accuracy of 

prediction of breeding values and the response to selection ( Toro and 

Varona, 2010 ; Aliloo et al., 2016 ; Duenk et al., 2017 ); (ii) they allow the 

definition of mate allocation procedures between candidates for selection (

Maki-Tanila, 2007 ; Toro and Varona, 2010 ; Aliloo et al., 2017 ); and (iii) they

can be used to benefit from non-additive genetic variation through the 

definition of appropriate crossbreeding or purebred breeding schemes (

Maki-Tanila, 2007 ; Zeng et al., 2013 ). 
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Genomic Selection Models with Dominance 
The simplest approach for the inclusion of dominance in genomic selection 

models is to extend the basic model with the inclusion of a dominance effect 

( Toro and Varona, 2010 ; Su et al., 2012 ) associated to each SNP marker: 

y i = μ + ∑ j = 1 n t i j a j + ∑ j = 1 n c i j d j + e i 

where y i is the phenotypic value of the ith individual and μ is the population 

mean. For each of the n SNP markers, a j and d j are the additive and 

dominance effects for the jth marker, respectively. The covariates t ij and c ij 

are 2, 1, and 0 (coded additively) and 0, 1, and 0 (coded in a “ biological 

dominant” manner) for the genotypes A 1 A 1 , A 1 A 2 , A 2 A 2 of each 

marker, respectively. In some ways, pedigree-based models for dominance 

were based on “ expected” dominant relationships. Thus, genomic models 

are based on “ observed” heterozygotes. However, when using this model it 

should be noted that that a j is no longer the marker substitution effect, but 

the “ biological” additive genotypic effect and individual breeding values are 

not predicted. In fact, the partition of variance in statistical components due 

to additivity, dominance, and epistasis does not reflect the “ biological” (or “ 

functional”) effect of the genes although it is useful for prediction and 

selection ( Huang and Mackay, 2016 ). The model was reformulated in terms 

of breeding values and dominance deviations (Falconer and Mackay, 1996) 

by Vitezica et al. (2013) after the assumption of a Hardy-Weinberg 

equilibrium within each: 

y i = μ + ∑ j = 1 n w i j α j + ∑ j = 1 n g i j d j + e i 
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where 

w i j = { ( 2 − 2 p j ) ( 1 − 2 p j ) − 2 p j A 1 A 1 A 1 A 2 A 2 A 2 g i j = { − 2 q

j 2 2 p j q j − 2 p j 2 A 1 A 1 A 1 A 2 A 2 A 2 

and α j = a j + d j ( q j − p j ) is now the allelic substitution effect and p j and q

j are the allelic frequencies for A 1 and A 2 for the jth SNP marker. The genetic

variance due to a single locus is: 

σ G j 2 = 2 p j q j [ a j + d j ( q j − p j ) ] 2 + ( 2 p j q j d j ) 2 

where the additive variance is σ A j 2 = 2 p j q j [ a j + d j ( q j - p j ) ] 2 = 2 p

j q j α j 2 and the dominance variance is σ D j 2 = ( 2 p j q j d j ) 2 and the 

multilocus variances, under linkage equilibrium (LE), are σ G 2 = ∑ j = 1 n σ 

G j 2 , σ A 2 = ∑ j = 1 n σ A j 2 and σ D 2 = ∑ j = 1 n σ D j 2 . In fact, “ 

biological” (in terms of genotypic additive and dominant values) and “ 

statistical” (in terms of breeding values and dominance deviations) models 

are equivalent parameterisations of the same model ( Vitezica et al., 2013 ), 

and the following expressions: 

σ A 2 = ∑ j = 1 n ( 2 p j q j ) σ a 2 + ∑ j = 1 n ( 2 p j q j ( q j − p j ) 2 ) σ d 2 σ 

A 2 = ∑ j = 1 n ( 2 p j q j ) σ a 2 σ D 2 = ∑ j = 1 n ( 4 p j 2 q j 2 ) σ d 2 σ D 2 =

∑ j = 1 n ( 2 p j q j ( 1 − 2 p j q j ) ) σ d 2 

that can be used to switch variance components estimates between “ 

biological” ( σ A * 2 and σ D * 2 ) and “ statistical” ( σ A 2 and σ D 2 ) models.

It can be verified that σ A 2 + σ D 2 = σ A * 2 + σ D * 2 . In addition, if p = q 

= 0. 5, all variances are identical and if d = 0, σ A 2 = σ A * 2 . A further 

generalization can be also achieved to avoid the requirements of the Hardy-
https://assignbuster.com/non-additive-effects-in-genomic-selection/
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Weinberg equilibrium ( Vitezica et al., 2017 ), by following the NOIA model (

Alvarez-Castro and Carlborg, 2007 ) by replacing w ij and g ij with: 

w i j = { − ( − p 12 j − 2 p 22 j ) A 1 A 1 − ( 1 − p 12 j − 2 p 22 j ) A 1 A 2 − 

( 2 − p 12 j − 2 p 22 j ) A 2 A 2 g i j = { − 2 p 12 j p 22 j p 11 j + p 22 j − ( p 

11 j − p 22 j ) 2 A 1 A 1 4 p 11 j p 22 j p 11 j + p 22 j − ( p 11 j − p 22 j ) 2 A 

1 A 2 − 2 p 11 j p 12 j p 11 j + p 22 j − ( p 11 j − p 22 j ) 2 A 2 A 2 

where, p 11 j , p 12 j , and p 22 j are the genotypic frequencies for A 1 A 1 , A 1 

A 2 , and A 2 A 2 at the jth SNP marker, respectively. 

Note that all these models require a regularization process for additive and 

dominance effects. The simplest approach is to expand the RR-BLUP by the 

assumption of a prior Gaussian distribution for the additive and dominance 

effects. It is feasible to assume any other kind of prior distribution for the 

dominance (as described above) and the additive effects ( Acevedo et al., 

2015 ). However, a major advantage of using a Gaussian prior distribution is 

that the model can be easily transformed into Henderson's Mixed Model 

equations by using the definition of additive (G) and dominance covariance 

matrices (D), as suggested by Vitezica et al. (2013) . 

Genomic selection models with dominance have been tested in several 

populations, including dairy cattle ( Ertl et al., 2014 ; Aliloo et al., 2016 ; Jiang

et al., 2017 ), pigs ( Esfandyari et al., 2016 ; Xiang et al., 2016 ), sheep (

Moghaddar and van der Werf, 2017 ), and layers ( Heidaritabar et al., 2016 ) 

with ambiguous results. Jiang et al. (2017) found a negligible percentage of 

variation explained by dominance effects for productive life in a Holstein 
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cattle population, although Ertl et al. (2014) suggested that dominance may 

suppose up to 39% of the total genetic variation for Somatic Cell Score in a 

population of Fleckvieh cattle. In general, the increase in the accuracy of 

additive breeding values by including dominance was scarce, with the 

exception of Aliloo et al. (2016) . 

Dominance and Inbreeding Depression (or Heterosis) 
The classical theory of quantitative genetics (Falconer and Mackay, 1996) 

postulates that inbreeding depression (or heterosis) occurs due to directional

dominance. However, the presence of directional dominance (i. e., a higher 

percentage of positive than negative dominant effects) is in sharp contrast to

the assumptions of the procedures described above that use symmetric prior

distributions. This drawback can be overcome by the assumption of a mean 

of dominant effects that is different from zero, e. g., E ( d ) = μ d , as 

proposed by Xiang et al. (2016) . The standard model can be reformulated 

as: 

y i = μ + ∑ j = 1 n t i j a j + ∑ j = 1 n c i j [ d j * + μ d ] + e i = μ + ∑ j = 1 n t 

i j a j + ∑ j = 1 n c i j d j * + ∑ j = 1 n c i j μ d + e i 

where d j * = d j - μ d , then E ( d *) = 0. It should be noted the term ∑ j = 1 n

c i j μ d is an average of dominance effects for the ith individual, because c ij 

has a value of 1 for heterozygous loci and 0 for homozygous. Inbreeding (or 

full homozygosity) coefficients f i can be calculated as: 

f i = 1 − ∑ j = 1 n c i j n 
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So, ∑ j = 1 n c i j μ d = ( 1 - f i ) n μ d = n μ d - f i n μ d . The first term nμ d is 

absorbed in the overall mean of the model (μ), and the second (− f i nμ d ) 

corresponds to a covariate b = − nμ d associated with inbreeding ( f i ). This 

covariate can be seen as inbreeding depression (if it has a detrimental 

effect) caused by genomic inbreeding. In addition, it can be also 

implemented in the GBLUP models described above with the introduction of 

a covariate within the mixed model equations. 

Nonetheless, it assumes that the expected mean of the dominance effects is 

the same for all markers. In the literature, there are signs that the decrease 

in performance is associated heterogeneously within the genomic regions (

Pryce et al., 2014 ; Howard et al., 2015 ; Saura et al., 2015 ). Models that 

consider alternative means of dominance effects within genomic regions 

may be useful to model inbreeding depression in a more appropriate way. 

An alternative approach to explain the phenomenon of inbreeding 

depression (or heterosis) is the consideration of a possible relationship 

between additive and dominance biological effects ( Wellmann and 

Bennewitz, 2011 ). There is theoretical proofs ( Caballero and Keightley, 

1994 ) and empirical evidence ( Bennewitz and Meuwissen, 2010 ) that 

supports this argument. Wellmann and Bennewitz (2012) expanded the “ 

biological” model described above with regularization procedures that allows

for this dependence. They defined up to four models (Bayes D0 to D3) based 

on the Bayes C approach ( Verbyla et al., 2009 ). The last two models (Bayes 

D2 and D3) included dependencies between genotypic additive and 

dominance effects. In the first (D2), the dependence was modeled through 

the prior variance of the dominance effects ( Var ( d || a |)) and in the second
https://assignbuster.com/non-additive-effects-in-genomic-selection/
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(D3), they further expanded it to the prior mean ( E ( d || a |)), where | a | is 

the absolute value of the additive effect. Implementation of these models is 

extremely complex and they have not been thoroughly tested ( Bennewitz et

al., 2017 ). 

Imprinting 
Another source of non-additive genetic variation is genomic imprinting ( Reik

and Walter, 2001 ). This involves total or partial inactivation of paternal and 

maternal alleles. Following the quantitative model established by Spencer 

(2002) , Nishio and Satoh (2015) put forward two alternative genomic 

selection models to include imprinting effects. The first extends the “ 

statistical” model with dominance (in terms of breeding values and 

dominance deviations) as: 

y i = μ + ∑ j = 1 n w i j α j + ∑ j = 1 n g i j d j + ∑ j = 1 n r i j i j + e i 

where 

w i j = { 2 − 2 p j 1 − 2 p j 1 − 2 p j − 2 p j A 1 A 1 A 1 A 2 A 2 A 1 A 2 A 2 g i

j = { − 2 q j 2 2 p j q j 2 p j q j − 2 p j 2 A 1 A 1 A 1 A 2 A 2 A 1 A 2 A 2 and r i

j = { 0 1 − 1 0 A 1 A 1 A 1 A 2 A 2 A 1 A 2 A 2 

and i j is the imprinting effects associated with jth marker. The second 

alternative proposed the distribution of the genetic effects into paternal ( p j )

and maternal ( m j ) gametic effects and a dominance deviation. 

y i = μ + ∑ j = 1 n l i j p j + ∑ j = 1 n j i j m j + ∑ j = 1 n g i j d j + e i 

where 
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l i j = j i j = { q j − ( 1 − q j ) A 1 A 2 

These models have been implemented in some studies with livestock data: (

Hu et al., 2016 ) did not find an increase in predictive ability when imprinting

effects were included in the model. In addition, estimates of the percentage 

of phenotypic variation caused by imprinting were small and ranged between

1. 3 and 1. 4% in pigs ( Guo et al., 2016 ) and from 0. 2 to 2. 1% in dairy 

cattle ( Jiang et al., 2017 ). However, this latter study reported that 

imprinting effects supposed more than 20% of the total genetic variance in 

some reproductive traits, like pregnancy or conception rate. 

Epistasis 
The last and most complex source of non-additive genetic variation is the 

epistatic interactions between two or more genes. An immediate approach 

for genomic evaluation including epistatic interactions is to define an explicit

model by including pairwise or higher order epistatic effects: 

y i = μ + ∑ j = 1 n t i j a j + ∑ j = 1 n c i j d j + ∑ j = 1 n ∑ k = 1 n t i j t i k a a

j k + ∑ j = 1 n ∑ k = 1 n t i j g i k a d j k + ∑ j = 1 n ∑ k = 1 n g i j g i k d d j k 

+ ∑ j = 1 n ∑ k = 1 n ∑ l = 1 n t i j t i k t i l a a a j k l + ∑ j = 1 n ∑ k = 1 n ∑ l 

= 1 n t i j t i k g i l a a d j k l + ∑ j = 1 n ∑ k = 1 n ∑ l = 1 n t i j g i k g i l a d d 

j k l + ∑ j = 1 n ∑ k = 1 n ∑ l = 1 n g i j g i k g i l d d d j k l + … + e i 

where aa jk , ad jk , and dd jk are second order additive x additive, additive x 

dominant and dominant x dominant epistatic effects between the jth and kth

SNP effects and aaa jkl , aad jkl , add jkl and ddd jk are third order additive x 

additive x additive, additive x additive x dominant, additive x dominant x 

dominant and dominant x dominant x dominant epistatic effects. Despite the
https://assignbuster.com/non-additive-effects-in-genomic-selection/



 Non-additive effects in genomic selectio... – Paper Example  Page 14

method of regularization used, the number of parameters to estimate is 

extremely large. Consequently, the computational requirements are 

enormous and the amount of information available, in the statistical sense, 

for the estimation of each epistatic effect is very small. Therefore, the most 

efficient (at least from a computational point of view) method for including 

epistatic interactions in genomic selection models is to define appropriate 

covariance matrices between individual effects, in the same way that the 

standard GBLUP model uses the genomic relationship matrix, but, in this 

case, taking into account the interactive nature of the genetic effects. There 

are two main approaches in the published literature: (1) the definition of 

genomic relationship matrices that consider epistatic interactions ( Varona et

al., 2014 ; Martini et al., 2016 ; Vitezica et al., 2017 ), and (2) the application 

of Kernel-based statistical methods ( Gianola et al., 2006 ; de los Campos et 

al., 2009a ; Morota and Gianola, 2014 ). 

This simplest method for defining genomic relationship matrices is the 

extended GBLUP model (EGBLUP) , described by Jiang and Reif (2015) and 

Martini et al. (2016) . These authors start from a reduced version of the “ 

biological” model: 

y i = μ + ∑ j = 1 n t i j a j + ∑ j = 1 n ∑ k = 1 n t i j t i k a a j k + e i 

and they define an equivalent model: 

y = 1 μ + g 1 + g 2 + e 

where μ is the general mean, yis the vector of phenotypic data andeis the 

vector of the residuals. In addition, the model includes one “ biologically” 
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additive (g 1 ) and one epistatic (g 2 ) multivariate Gaussian term with the 

following distributions: 

g 1 ~ N ( 0 , G 1 σ g 1 2 ) g 2 ~ N ( 0 , G 2 σ g 2 2 ) 

WhereG 1 = TT′andG 2 = G 1 °G 1 being: 

T = [ t 11 ⋯ t 1 n ⋮ ⋱ ⋮ t k 1 ⋯ t k n ] 

and the Hadamard product. Moreover, n is the number of SNP markers and k

the number of individuals. However, with this model the additive and 

epistatic effects are not orthogonal and dominant effects are not included. 

Therefore, it can only be used for prediction of the phenotypes and not for 

the estimation of variance components ( Martini et al., 2016 ). To avoid this 

inconvenience, Varona et al. (2014) and Vitezica et al. (2017) developed a 

full orthogonal model. They start with the expansion of the individual 

genotypic effect into additive, dominance and epistatic effects: 

y = 1 μ + g + e = 1 μ + g A + g D + ∑ i = A , D ∑ j = A , D g i j + ∑ i = A , D 

∑ j = A , D ∑ k = A , D g i j k + … + e 

Wheregis the vector of the individual genotypic effects, g A is the vector of 

additive effects, g D the vector of individual dominance effects, g ij is the 

second order epistatic effects, g ijk the third order epistatic effects and so on.

For simplicity, each individual effect is defined by the sum of SNP (or 

combination of SNP) effectshwith equal prior Gaussian variability and 

weighted by an incidence matrix (H). So, for the additive and dominant 

effects, g A = H A aandg D = H D d: : 
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H A = ( h A1 … h Ak ) and H D = ( h D1 … h Dk ) 

Where eachhvector is composed by n (number of SNP markers) elements (h 

Ai = { h Ai 1 , h Ai 2 , …, h Ain } andh Di = { h Di 1 , h Di 2 , …, h Din }) 

andaanddare the vectors of the SNP additive and dominant effects. Theseh Ai

andh Di vectors can be defined in several ways, depending of the reference 

point or the assumption of the Hardy-Weinberg equilibrium, among others. 

However, orthogonal partitioning of variances must follow the NOIA approach

( Alvarez-Castro and Carlborg, 2007 ): 

h A i j = { − ( − p 12 j − 2 p 22 j ) A 1 A 1 − ( 1 − p 12 j − 2 p 22 j ) A 1 A 2 

− ( 2 − p 12 j − 2 p 22 j ) A 2 A 2 h D i j = { − 2 p 12 j p 22 j p 11 j + p 22 j 

− ( p 11 j − p 22 j ) 2 A 1 A 1 4 p 11 j p 22 j p 11 j + p 22 j − ( p 11 j − p 22 

j ) 2 A 1 A 2 − 2 p 11 j p 12 j p 11 j + p 22 j − ( p 11 j − p 22 j ) 2 A 2 A 2 

Therefore, and under the assumption that SNP additive or dominant effects 

follow a Gaussian distribution, the additive and dominant “ genomic” (co) 

variance relationship matrices can be computed as: 

C o v ( g A ) = H A H A ′ t r ( H A H A ′ ) / n σ A 2 C o v ( g D ) = H D H D ′ t r 

( H D H D ′ ) / n σ D 2 

where the division by traces standardizes the variance components to an 

ideal infinite “ unrelated” population. For second order epistatic effects (g AA

, g AD , andg DD ), Alvarez-Castro and Carlborg (2007) proved that: 

h AAij = h Ai ⊗ h Aj h ADij = h Ai ⊗ h Dj h DDij = h Di ⊗ h Dj 

and, as a consequence, the matricesH AA , H AD andH DD can be written as: 
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H A A = ( h A 1 ⊗ h A 1 h A 2 ⊗ h A 2 . h A n ⊗ h A n ) H A D = ( h A 1 ⊗ h D 1

h A 2 ⊗ h D 2 . h A n ⊗ h D n ) H D D = ( h D 1 ⊗ h D 1 h D 2 ⊗ h D 2 . h D n 

⊗ h D n ) 

and, as before, under the assumption of Gaussian distribution of second-

order epistatic effects, the covariance between them can be calculated as: 

C o v ( g A A ) = H A A H A A ′ t r ( H A A H A A ′ ) / n σ A A 2 = G A A σ A A 2 

C o v ( g A D ) = H A D H A D ′ t r ( H A D H A D ′ ) / n σ A D 2 = G A D σ A D 2

C o v ( g D D ) = H D D H D D ′ t r ( H D D H D D ′ ) / n σ D D 2 = G D D σ D D 

2 

and the covariance between any higher order epistatic effects must be: 

C o v ( g i j k ) = H i j k H i j k ′ t r ( H i j k H i j k ′ ) / n σ i j k 2 = G i j k σ i j k 2

However, Hmatrices are extremely large and calculation ofHH′cross-products

is computationally expensive; eachHmatrix has as many columns as marker 

interactions and as many rows as individuals. Nevertheless, Vitezica et al. 

(2017) provided an algebraic shortcut that allows calculation from the 

additive and dominance matrices, described above, as: 

C o v ( g A A ) = G A ∘ G A t r ( G A ∘ G A ) / n σ A A 2 = G A A σ A A 2 C o v 

( g A D ) = G A ∘ G D t r ( G A ∘ G D ) / n σ A D 2 = G A D σ A D 2 C o v ( g D 

D ) = G D ∘ G D t r ( G D ∘ G D ) / n σ D D 2 = G D D σ D D 2 

For higher order interactions the results are equivalent. As an example, the 

covariance matrix for the AAD epistatic interaction can be calculated as: 
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C o v ( g A A D ) = G A ∘ G D ∘ G D t r ( G A ∘ G D ∘ G D ) / n σ A D D 2 = G A 

D D σ A D D 2 

It should be noted thatG∘G… products tend toIand higher order epistatic 

effects tend to be confused with residuals. Nevertheless, this orthogonal 

approach assumes linkage equilibrium between SNP molecular markers. 

Linkage disequilibrium (LD) modifies the distribution of the variance into 

additive, dominance and epistatic components, and orthogonal partition is 

not possible ( Hill and Maki-Tanila, 2015 ). In outbred populations, substantial

LD is present only between polymorphisms in tight linkage ( Hill and Maki-

Tanila, 2015 ). However, whilst the distribution of epistatic effects is still 

unclear ( Wei et al., 2015 , there is evidence of epistatic interactions 

between linked loci ( Lynch, 1991 ). Alternative approaches, such as those of

Akdemir and Jannick (2015) and Akdemir et al. (2017) have been developed 

to define locally epistatic relationship matrices. These studies used a RKHS 

(Reproducing Kernel Hilbert Space) to define these matrices and average 

them. 

The RKHS approach to model epistatic interactions relies on the idea that the

relationship between phenotypes and genotypes may not be linear ( Gianola 

et al., 2006 ; de los Campos et al., 2009a ). The main objective is to predict 

the performance of each individual given its marker genotype through a 

function that maps the genotypes into phenotypic responses. One of the 

simplest methods is to consider that this function is linear and, consequently,

the results are equivalent to the GBLUP approach. Nevertheless, the power 

of the Kernel concept relies on the possibility of using alternative functions of
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marker genotypes. In short, RKHS procedures result in some non-parametric 

functions g() of a SNP markers set (X): 

y = μ + g ( X ) + e 

and define a cost function to minimize 

J = ( y − g ( X ) ) ′ ( y − g ( X ) ) + λ ‖ g ( X ) ‖ H 2 

where the term | | g ( X ) | | H 2 is a norm under a Hilbert space. Kimeldorf 

and Wahba (1971) found thatg(X) can be reformulated as: 

g ( X ) = α 0 + ∑ i = 1 n α i K ( x − x i ) 

whereKis a positive semi-definite matrix that meets the requisites of a Kernel

Matrix. It defines the similarity between individuals and meets the distance 

requirements in a Hilbert space ( Wootters, 1981 ). The performance of the 

method depends on an adequate choice ofKthat can be chosen from among 

a very large number of options. The easiest RKHS option is to use the 

genealogical (A) or genomic (G) relationship matrices as kernel matrices (

Rodríguez-Ramilo et al., 2014 ), this leads to the standard BLUP or the GBLUP

as particular cases of RKHS. However, they only are able to capture the 

additive genetic variation and if the model tries to accommodate dominance 

or epistatic interactions, an alternative Kernel matrix has to be implemented 

for a pair of SNP vectors of two individuals (xandx′). Most kernels proposed 

so far ( Gianola et al., 2006 ; Piepho, 2009 ; Morota et al., 2013 ; Tusell et al.,

2014 ) consider the similarity across individuals within loci (i. e., similarities 

within loci are summed). Using Taylor series expansions, it can be shown 

that kernels of this type are a weighted sum of the additive (G) and 
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dominance covariance matrices (D), and therefore implicitly account for 

dominance ( Piepho, 2009 ). However, these kernels do not consider joint 

similarity across loci. A kernel that includes epistasis should measure 

similarities simultaneously between pairs, triplets etc., of loci across 

individuals, as described in Jiang and Reif (2015) and Martini et al. (2016) . 

Applications of Genomic Selection with Non-Additive 
Genetic Effects 
Predictive Performance 
The most direct application of the genomic prediction models is to predict 

the performance of an individual for continuous or categorical phenotypes. 

Here the introduction of non-additive genetic effects in the procedures of 

prediction becomes relevant, as the main objective is to predict performance

conditioned on the genotype of the individual, despite the additive, dominant

or epistatic gene action. In fact, simulation studies show up to 17% more 

accurate predictions based on the sum of additive and dominance effects 

compared to prediction based on only additive effects ( Wellmann and 

Bennewitz, 2012 ; Da et al., 2014 ). However, the performance of semi-

parametric or non-parametric approaches such as RKHS methods seems to 

be appropriate because they are designed to maximize predicting ability 

over a given individual and not to predict the future performance of the 

progeny; they are also designed to capture complex and non-explicit 

interactions. Moreover, some new research fields have merged with genomic

evaluation for predicting future performance, examples include: 

microbiomics ( Ramayo-Caldas et al., 2016 ; Yang et al., 2017 ), 

metabolomics ( Fontanesi, 2016 ) and precision farming ( Banhazi et al., 
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2012 ). Over time they will provide a global picture of the genetic and 

environmental circumstances that affect the future performance of 

individuals and they will contribute to the development of more accurate 

prediction models. 

Mate Allocation 
In the past, there was a strong belief in “ nicking”: pairs of individuals that, 

wisely selected, would give rise to very efficient offspring ( Lush, 1943 ). In 

terms of quantitative genetics, the existence of “ nicking” would imply that 

there is large variance of dominant deviations (or epistasis) compared to the 

variance of breeding values, something that finally turned out to be 

generally false. Even so, there is room for mate allocation within a population

( Toro and Varona, 2010 ). Under models that include dominance effects, the

output of the genomic selection procedure can be used to calculate the 

prediction of performance of future mating (G ij ) between the ith and jth 

individual as: 

E ( G i j ) = ∑ k = 1 n [ p r i j k ( A 1 A 1 ) a ^ J + p r i j k ( A 1 A 2 ) d ^ J − p r

i j k ( A 2 A 2 ) a ^ J ] 

where pr ijk ( A 1 A 1 ), pr ijk ( A 1 A 2 ), and pr ijk ( A 2 A 2 ) are the probabilities

of the genotypes A 1 A 1 , A 1 A 2 , and A 2 A 2 for the combination of the ith 

and jth individual and the kth marker, â k and d ^ k are the estimates of the 

additive and dominance effects for the same marker and n is the number of 

markers. Later, optimisation procedures like linear programming ( Jansen 

and Wilton, 1985 ) or heuristic approximations (simulated annealing, 

Kirkpatrick et al., 1983 ) can be used to define a set of mates that maximize 
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performance in the future generation. In a simulated example, Toro and 

Varona (2010) compared random mating vs. mate selection with a model 

including dominance and found advantages that ranged between 6 and 22% 

of the expected response. Sun et al. (2013) , Ertl et al. (2014) , and Aliloo et 

al. (2017) have confirmed these improvements with dairy cattle data. 

However, its implementation in livestock populations is limited because it 

must be taken into account that the accuracy of the prediction of a potential 

mate will be low and the advantage will be only relevant when traits have a 

large amount of non-additive genetic variance. In addition, it requires the 

genotyping of male and females in the population that is not always 

available. Moreover, the use of models that include more complex 

interactions, such as models with epistatic effects or non-parametric 

approaches, is not so immediate. In fact, the predicted performance of a 

mate should be calculated after integrating the predictive performance over 

all possible future genotypic configurations of the expected progeny. For 

epistasis (but not for dominance) these genotypic configurations also depend

on recombination fractions across the genome. 

Selection for Crossbreeding 
There is consensus that profit from non-additive genetic effects in a selection

program can be obtained when commercial animals are the product of 

mating with those that do not participate in the maintenance of a breeding 

population. The typical way to proceed is to produce two-way or three-way 

crosses between populations maintained and selected separately (i. e., in 

pigs). Selection is carried out within lines to benefit from additivity and, in 

addition, the value of the cross may increase due to the heterosis. Some of 
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the most popular livestock production systems, including pig, poultry, and 

rabbit production, involve regular crossbreeding schemes, with the aim of 

capturing the complementarity between the performance of the purebred 

populations and heterosis. The breeding goal within pure lines is to select 

individuals to maximize the response in the crossbred population. The 

traditional approach for this objective was Reciprocal Recurrent Selection—

RRS—( Comstock et al., 1949 ). RRS postulates the selection of individuals in 

purebred populations based on the performance of their crossbred progeny. 

If the source of information is the performance of these crossbred progeny, 

the main drawback of the practical application of RRS is the increase of 

generation intervals that reduce overall genetic response. In practical terms, 

the performance of the pure lines is used, and a high genetic 

purebred/crossbred correlation is sought in order to warrant correct genetic 

progress ( Wei and van der Werf, 1994 ), however, this may not be the case 

because of non-additive effects or genotype x environment (G x E) 

interactions. 

The use of genomic information can provide a very useful tool to improve the

ability of prediction of breeding values in purebred populations based on 

crossbred performance without the need to wait for recording crossbred 

progeny. Ibánez-Escriche et al. (2009) designed a first approach of the use of

GS for crossbred performance under a purely additive model. This study 

defined a breed specific genomic selection model as: 

y i = μ + ∑ j = 1 n ( t i j k S α j k S + t i j l D α j l D ) + e i 
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where t i j k S is the SNP allele at the jth locus from breed k and received 

from the sire of the ith individual that can take values 0 or 1, and α j k S is 

the breed-specific substitution effect for the jth locus and the kth breed. 

Similarly, t i j l D and α j l D were defined for the alleles received from the 

dam of the lth breed. The objective of this approach was to estimate allele 

substitution effects within breed. Even under the assumption of absence of G

x E interactions, SNP allele substitution effects may differ between 

populations due to: (1) Specific population patterns of linkage disequilibrium 

with the QTL, or (2) The presence of genotypic dominance effects. The allelic 

substitution effects of the A (or B) population (α A or α B ) on performance of 

A x B depends on the biological additive (a) and dominance (d) effects, and 

the allelic frequencies of B–p B - (or A–p A -) as α A = a + (1 − 2 p B ) d or α B 

= a + (1 − 2 p A ) d ). Under dominance, Kinghorn et al. (2010) 

demonstrated a clear advantage of this approach, assuming the estimation 

of SNP effects was perfect. This model has been expanded by Sevillano et al.

(2017) to a three-way crossbreeding scheme, after the evaluation of a 

procedure to trace the breed-of-origin of alleles in three-way crossbred 

animals ( Sevillano et al., 2016 ). This is an example of the “ partial genetic” 

approach (substitution effects defined within populations). Stuber and 

Cockerham (1966) showed that gene substitution effects can be defined 

within populations or across populations, and, if all the (non-additive) effects 

are accounted for, both approaches are equivalent. Christensen et al. (2015) 

proposed an alternative model called the “ common genetic” approach. Both

models were compared by Xiang et al. (2016 , 2017) in the same data set 

with very similar results, but more research is still needed. 

https://assignbuster.com/non-additive-effects-in-genomic-selection/



 Non-additive effects in genomic selectio... – Paper Example  Page 25

Crossbreeding implies mating between individuals of parental populations 

and a formal description of the additive and dominance variance in the 

crossbred population is required to evaluate the relevance of mate allocation

when the crossbreds are generated. Toosi et al. (2010) and Zeng et al. 

(2013) extended the aforementioned model to include additive and 

dominance effects and proved (in both cases with simulated data) its 

superiority over the strictly additive model if dominance variance is present. 

These results were confirmed by Esfandyari et al. (2015) , who proved that 

the response to selection for crossbreeding performance is increased by 

training on crossbred genotypes and phenotypes, and by tracking the allele 

line origin when pure lines are not closely related. Later, Vitezica et al. 

(2016) described the substitution effects and dominance deviations within 

the scope of an F1 population and showed that the additive and dominant 

variance in a crossbred population is: 

σ A ( A ) 2 = 2 p A q A α A 2 = 2 [ p A q A a 2 + 2 p A q A ( q B − p B ) a d + 

p A q A ( q B − p B ) 2 d 2 ] σ A ( A ) 2 = 2 p A q A [ a + ( q B − p B ) d ] 2 σ A

( B ) 2 = 2 p B q B α B 2 = 2 [ p B q B a 2 + 2 p B q B ( q A − p A ) a d + p B 

q B ( q A − p A ) 2 d 2 ] σ A ( B ) 2 = 2 p B q B [ a + ( q A − p A ) d ] 2 σ D 2 

= 4 p A q A p B q B d 2 

where σ A ( A ) 2 and σ A ( B ) 2 are the additive variance generated by the 

purebred populations A and B, respectively, σ D 2 is the dominance variance,

p A , q A , p B and q B are the allelic frequencies in purebred populations, and 

a and d are the additive and dominance effects. 
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However, all these approaches assume that the additive and dominance 

effects have the same magnitude in pure and crossbred populations and this 

implies an absence of G x E interaction. To avoid this restriction, Vitezica et 

al. (2016) and Xiang et al. (2016) proposed a multivariate genomic BLUP that

is capable of considering different additive and dominance effects and their 

correlations between pure and crossbred populations. 

Selection in Purebred Populations 
The response to selection in purebred populations depends on the 

magnitude of the additive variance and on the prediction of the additive 

breeding values for the candidates for reproduction. It is usually assumed 

that it is not worth selecting individuals with the highest dominance values 

because they will go back to zero as a result of random mating. However, 

Toro (1993 , 1998) proposed two mating strategies that can be used to take 

advantage of dominance in a closed population. The first ( Toro, 1993 ), was 

a method that basically consists of performing two types of mating: (a) 

minimum coancestry mating in order to obtain the progenies that will 

constitute the commercial population and will also be utilized for testing, and

(b) maximum coancestry mating from which the breeding population will be 

maintained. Toro's second strategy ( Toro, 1998 ) advocates the use of the 

selection of grandparental combinations. Both strategies are analogous with 

reciprocal-recurrent selection ( Comstock et al., 1949 ) in that they rely on 

the crucial distinction between commercial and breeding populations. 

Nevertheless, they have been exclusively tested by simulation and with a 

reduced set of genes with known additive and dominance effect. Their 

efficiency has yet to be verified using a large number of SNP markers. 
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Final Remarks 
Despite huge efforts in the development of statistical models for the 

implementation of genomic selection with non-additive effects, there are still

some issues that have to be dealt with before the use of these models in 

genomic evaluation becomes standard. A major obstacle is the lack of 

serious testing as this requires extensive data sets with genotypes and 

phenotypes, and these data sets are rare. In fact, non-additive genetic 

variance is expected to be low for most traits ( Crow, 2010 ; Hill et al., 2010),

with the exception of fitness related traits. Therefore, the inclusion of non-

additive effects in genomic selection models will provide very low (or 

negligible) improvement in the genetic response or the ability of prediction. 

Non-additive effects are easily incorporated into GBLUP procedures ( Vitezica

et al., 2013 , 2017 ) but efforts must be made to define a single-step 

approach ( Aguilar et al., 2010 ) that is able to use phenotypic data from 

non-genotyped individuals and the complete genealogical information of 

breeding schemes. The major limitation of the GBLUP or single-step 

approaches is the calculation of the inverse of the genomic relationship 

matrices (G), the introduction of non-additive effects will involve the 

calculation of the inverse of additional matrices related with dominance or 

epistatic effects. Nevertheless, this is really a constraint in populations with a

large number of genotyped individual (i. e., Holstein), while most of the 

livestock populations do not suffer for any limitations. In fact, the 

computational cost for inverting additive and non-additive genomic 

relationship matrices is equivalent. On the other hand, using current 

https://assignbuster.com/non-additive-effects-in-genomic-selection/



 Non-additive effects in genomic selectio... – Paper Example  Page 28

pedigree-based BLUP models based on dominance ( de Boer and Hoeschele, 

1993 ) seems futile because the models are computationally complicated. 

Recent studies ( Xiang et al., 2016 ) have shown that inbreeding depression 

can be modeled and included in GS approaches through a covariate with the 

average individual heterozygosity. Nevertheless, this approach only 

considers the effects of the dominance in inbreeding depression and the role 

of epistatic interactions in inbreeding depression ( Minvielle, 1987 ) has not 

yet been studied. However, directional dominance is not necessary requisite 

for having a substantial dominance variance. In fact it would be interesting 

to know if there are traits with substantial dominance variance and without 

inbreeding depression, because they would be good candidates for 

successful strategies of using dominance. In addition, it should be mentioned

that the genetic architecture of non-additive genetic effects and its 

relationship with inbreeding depression and heterosis is a relevant subject of

future research. 

The presence of dominance with inbreeding implies the existence of up to 

five variance components in pedigree-based analysis ( Smith and Maki-

Tanila, 1990 ; de Boer and Hoeschele, 1993 ): additive; dominance between 

non-inbred; dominance between inbred; covariance between additive; and, 

inbred dominance values and inbreeding depression. As far as we know, this 

model has only been used twice with real data in animal breeding ( Shaw 

and Woolliams, 1999 ; Fernández et al., 2017 ); their equivalence with the 

variance components captured by SNP marker effects has to be clarified. 
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Finally, the parametric approach for the estimation of epistatic effects (

Vitezica et al., 2017 ) fails when linkage disequilibrium is present. A full 

description of the effect of the genes and their interactions in populations 

under linkage disequilibrium and the definition of predictive effects has not 

been reformulated within the scope of genomic selection. It is unclear what 

we mean by genetic variances when there is linkage disequilibrium, 

particularly because linkage disequilibrium is population specific and 

unstable across generations or subpopulations. Nevertheless, Mäki-Tanila 

and Hill (2014) showed that when the number of loci increases, epistatic 

variance disappears. At the same time, the proportion of dominance 

variance stays the same. Thus, dominance variance is the main non-additive 

component even with linkage disequilibrium ( Hill and Maki-Tanila, 2015 ). 
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