
The parallel 
applications for 
distributed systems

https://assignbuster.com/the-parallel-applications-for-distributed-systems/
https://assignbuster.com/the-parallel-applications-for-distributed-systems/
https://assignbuster.com/the-parallel-applications-for-distributed-systems/
https://assignbuster.com/


The parallel applications for distribute... – Paper Example Page 2

Introduction 
Distributed systems and computational Grids (Foster and Kesselman) involve

large system dynamics that it is highly desirable to reconfigure executing 

applications in response to the change in environments. Since parallel 

applications execute on large number of shared systems, the performance of

the applications will be degraded if there is increase in external load on the 

resources caused by other applications. 

Also, it is difficult for users of parallel applications to determine the amount 

of parallelism for their applications and hence may want to determine the 

amount of parallelism by means of trial-and-error experiments. Due to the 

large number of machines involved in the distributed computing systems, 

the mean single processor failure rate and hence the failure rate of the set of

machines where parallel applications are executing are fairly high (Beguelin 

et al.) Hence, for long running applications involving large number of 

machines, the probability of successful completions of the applications is 

low. Also, machines may be removed from executing environment for 

maintenance. 

In the above situations, it will be helpful for the users or the scheduling 

system to stop the executing parallel application and continue it possibly 

with a new configuration in terms of the number of processors used for the 

execution. In cases of the failure of the application due to non-deterministic 

events, restarting the application on a possibly new configuration also 

provides a way of fault tolerance. Paper defines the following terms that are 

https://assignbuster.com/the-parallel-applications-for-distributed-systems/



The parallel applications for distribute... – Paper Example Page 3

commonly used in the literature to describe parallel applications with 

different capabilities. 

1. Moldable applications – Parallel applications that can be stopped at any 

point of execution but can be restarted only on the same number of 

processors. 

2. Malleable applications – Parallel applications that can be stopped at any 

point of execution and can be restarted on a different number of processors. 

These applications are also called reconfigurable applications. 

3. Migratable applications – Parallel applications that can be stopped at any 

point of execution and can be restarted on processors in a different site, 

cluster or domain. 

Reconfigurable or malleable and migratable applications provide added 

functionality and flexibility to the scheduling and resource management 

systems for distributed computing. 

In order to achieve starting and stopping of the parallel applications, the 

state of the applications have to be checkpointed. Some scholars (Elonazhy; 

Plank) have surveyed several checkpointing strategies for sequential and 

parallel applications. Checkpointing systems for sequential (Tannenbaum 

and Litzkow). and parallel applications (Dikken et al.) have been built. 

Checkpointing systems are of different types depending on the transparency 

to the user and the portability of the checkpoints. Transparent and semi-

transparent checkpointing systems (Tannenbaum and Litzkow) hide the 

details of checkpointing and restoration of saved states from the users, but 

https://assignbuster.com/the-parallel-applications-for-distributed-systems/



The parallel applications for distribute... – Paper Example Page 4

are not portable. Non-transparent checkpointing systems (Geist et al.) 

involves the users to make some modifications to their programs but are 

highly portable across systems. Checkpointing can also be implemented at 

the kernel level or user-level. 

This paper describes a checkpointing infrastructure that helps in the 

development and execution of malleable and migratable parallel applications

for distributed systems. The infrastructure consists of a user-level semi-

transparent checkpointing library called SRS (Stop Restart Software) and a 

Runtime Support System (RSS). The SRS library is semi-transparent because 

the user of the parallel applications has to insert calls in his program to 

specify the data for checkpointing and to restore the application state in the 

event of a restart. 

But the actual storing of checkpoints and the redistribution of data in the 

event of a reconfiguration are handled internally by the library. Though there

are few checkpointing systems that allow changing the parallelism of the 

parallel applications (Geist et al.), the system is unique in that it allows for 

the applications to be migrated to distributed locations with different file 

systems without requiring the users to manually migrate the checkpoint data

to distributed locations. This is achieved by the use of a distributed storage 

infrastructure called IBP (Plank et al.) that allows the applications to remotely

access checkpoint data. 

SRS Checkpointing Library 

SRS (Stop Restart Software) is a user-level checkpointing library that helps to

make iterative parallel MPI message passing applications reconfigurable. 

https://assignbuster.com/the-parallel-applications-for-distributed-systems/



The parallel applications for distribute... – Paper Example Page 5

Iterative parallel applications cover a broad range of important applications 

including linear solvers, heat-wave equation solvers, partial differential 

equation (PDE) applications etc. The SRS library has been implemented in 

both ? and Fortran and hence SRS functions can be called from both ? and 

Fortran MPI programs. The SRS library consists of 6 main functions: 

1. SRSJnit, 

2. SRSJtestart-Value, 

3. SRS-Read, 

4. SRS-Register, 

5. SRS-CheckJ3top and 

6. SRS-Finish. 

The user calls SRS-Init after calling MPIJnit. SRS-Init is a collective operation 

and initializes the various data structures used internally by the library. 

SRSJnit also reads various parameters from a user-supplied configuration file.

These parameters include the location of the Runtime Support System (RSS) 

and a flag indicating if the application needs periodic checkpointing. SRSJnit, 

after reading these parameters, contacts the RSS and sends the current 

number of processes that the application is using. It also receives the 

previous configuration of the application from the RSS if the application has 

been restarted from a previous checkpoint. 

In order to stop and continue an executing application, apart from 

checkpointing the data used by the application, the execution context of the 

https://assignbuster.com/the-parallel-applications-for-distributed-systems/



The parallel applications for distribute... – Paper Example Page 6

application also needs to be stored. For example, when the application is 

initially started on the system, various data needs to be initialized, whereas 

when the application is restarted and continued, data needs to be read from 

a checkpoint and the initialization phase can be skipped. Most checkpointing 

systems [30] restore execution context by storing and retrieving execution 

stack. This solution compromises on the portability of the checkpointing 

system. 

Since the main goal of the SRS library is to provide heterogeneous support, 

the task of restoring the execution context is implemented by the user by 

calling SRS-Restart_Value. SRS-Restart-Value returns 0 if the application is 

starting its execution and 1 if the application is continuing from its previous 

checkpoint. By using these values returned by SRS_Restart_Value, the user 

can implement conditional statements in his application to perform certain 

parts of the code when the application begins certain other parts of the code 

and its execution when the application is continued from its preceding 

checkpoint. 

SRS library uses Internet Backplane Protocol (IBP) (Plank et al.) for storage of

the checkpoint data. It depots are started on all the machines the user wants

to use for the application’ execution. SRS-Register is used to spot the data 

that will be checkpointed by the SRS library through periodic checkpointing 

or when SRS-Check_Stop is called. Only the data that are passed in the SRS-

Register call are checkpointed. The user specifies the parameters of the data

including the size, data type and data distribution when calling SRS-Register.

The data distributions supported by the SRS library include common data 

distributions like block, cyclic and block-cyclic distributions. For 

https://assignbuster.com/the-parallel-applications-for-distributed-systems/



The parallel applications for distribute... – Paper Example Page 7

checkpointing data local to a process of the application or for data without 

distribution, a distribution value of 0 can be specified. SRS-Register stores 

the various parameters of the data in a local data structure. SRS-Register 

does not perform actual checkpointing of the data. 

SRS_Read is the main function that achieves reconfiguration of the 

application. When the application is stopped and continued, the 

checkpointed data can be retrieved by invoking SRS-Read. The user specifies

the name of the checkpointed data, the memory into which the checkpointed

data is read and the new data distribution when calling SRS-Read. The data 

distribution specified can be conventional distributions or 0 for no 

distribution or SAME if the same data has to be propagated over all 

processes. The value SAME is useful for retrieving iterator values when all 

the processes need to start execution from the same iteration. The SRS-Read

contacts the RSS and retrieves the previous data distribution and the 

location of the actual data. If no distribution is specified for SRS-Read, each 

process retrieves the entire portion of the data from the corresponding IBP 

depot used in the previous execution. 

If SAME is used for the data distribution, the first process reads the data from

the IBP depot corresponding to the first process in the previous execution 

and broadcasts the data to the other processes. If data distribution is 

specified in SRS_Read, SRS-Read determines the data maps for the old and 

new distributions of the data corresponding to the previous and the current 

distributions. Based on the information contained in the data maps, each 

process retrieves its portion of data from the IBP depots containing the data 

portions. Thus reconfiguration of the application is achieved by using 

https://assignbuster.com/the-parallel-applications-for-distributed-systems/



The parallel applications for distribute... – Paper Example Page 8

different level of parallelism for the current execution and specifying a data 

distribution in SRS-Read that may be different from the distribution used in 

the previous execution. 

SRS-Check_Stop is a collective operation and called at various phases of the 

program to check if the application has to be stopped. If SRS-Check-Stop 

returns 1, then an external component has requested for the application to 

stop, and the application can execute application-specific code to stop the 

executing application. SRS-Check_Stop contacts the RSS to retrieve a value 

that specifies if the application has to be stopped. 

If an external component has requested for the application to be stopped, 

SRS-Check-Stop stores the various data distributions and the actual data 

registered by SRS-Register to the IBP (Plank et al.) depots. Each process of 

the parallel application stores its piece of data to the local IBP depot. By 

storing only the data specified by SRS-Register and requiring each process of

the parallel application to the IBP depot on the corresponding machine, the 

overhead incurred for checkpointing is significantly low. SRS-Check-Stop 

sends the pointers for the checkpointed data to RSS and deletes all the local 

data structures maintained by the library. 

SRS-Finish is called collectively by all the processes of the parallel 

application before MPI-Finish in the application. SRS-Finish deletes all the 

local data structures maintained by the library and contacts the RSS 

requesting the RSS to terminate execution. Apart from the 6 main functions, 

SRS also provides SRS-DistributeFunc-Create and SRS_DistributeMap-Create 

https://assignbuster.com/the-parallel-applications-for-distributed-systems/



The parallel applications for distribute... – Paper Example Page 9

to allow the user specify his own data distributions instead of using the 

conventional data distributions provided by the SRS library. 

Runtime Support System (RSS) 

RSS is a sequential application that can be executed on any machine with 

which the machines used for the execution of actual parallel application will 

be able to communicate. RSS exists for the entire duration of the application 

and spans across multiple migrations of the application. Before the actual 

parallel application is started, the RSS is launched by the user. The RSS 

prints out a port number on which it listens for requests. The user fills a 

configuration file called srs. config with the name of the machine where RSS 

is executing and the port number printed by RSS and makes the 

configuration file available to the first process of the parallel application. 

When the parallel application is started, the first process retrieves the 

location of RSS from the configuration file and registers with the RSS during 

SRS_Init. The RSS maintains the application configuration of the present as 

well as the previous executions of the application. 

The RSS also maintains an internal flag, called stop-flag that indicates if the 

application has to be stopped. Initially, the flag is cleared by the RSS. A 

utility called stop-application is provided and allows the user to stop the 

application. When the utility is executed with the location of RSS specified as

input parameter, the utility contacts the RSS and makes the RSS set the 

stop-flag. When the application calls SRS-Check. Stop, the SRS library 

contacts the RSS and retrieves the stop-flag. The application either continues

executing or stops its execution depending on the value of the flag. 

https://assignbuster.com/the-parallel-applications-for-distributed-systems/



The parallel applications for distribute... – Paper Example Page 10

When the SRS-Check_Stop checkpoints the data used in the application to 

IBP depots, it sends the location of the checkpoints and the data distributions

to the RSS. When the application is later restarted, it contacts the RSS and 

retrieves the location of the checkpoints from the RSS. When the application 

finally calls SRS-Finish, the RSS is requested by the application to terminate 

itself. The RSS cleans the data stored in the IBP depots, deletes its internal 

data structures and terminates. 

Related Work 

Checkpointing parallel applications have been extensively studied (Elnozahy 

et al.) and have been developed checkpointing systems for parallel 

applications (Dikken et al., Godard et al.). Some of the systems were 

developed for homogeneous systems (Russ et al.) while some checkpointing 

systems permits applications to be checkpointed and restarted on 

heterogeneous systems (Naik et al.) Calypso and Plinda (Jeong et al.; 

Baratloo et al.) require application writers to write their programs in terms of 

special constructs and cannot be used with third-party software. 

Systems including Dynamic PVM (Dikken et al.) and CUMULVS (Geist et al.) 

use PVM mechanisms for fault detection and process spawning and can only 

be used with PVM environments. Cocheck and Starfish (Stellner; Agbaria and 

Friedman) provide fault tolerance with their own MPI implementations and 

hence are not suitable for distributed computing and Grid systems where the

more secure MPICH-G (Foster and Karonis) is used. CUMULVS (Geist et al.) 

Dome (Arabe et al.), the work by Hofmeister and Deconick, DRMS (Naik et 

al.) and DyRecT (Godard et al.) are closely related to our research in terms of

https://assignbuster.com/the-parallel-applications-for-distributed-systems/



The parallel applications for distribute... – Paper Example Page 11

the checkpointing API, the migrating infrastructure and reconfiguration 

capabilities. 

The CUMULVS (Geist et al.) API is very similar to our API in that it requires 

the application writers to specify the data distributions of the data used in 

the applications and it provides support for some of the commonly used data

distributions like block, cyclic etc. CUMULVS also supports stopping and 

restarting of applications. But the applications can be stopped and continued

only on the same number of processors. Though CUMULVS supports MPI 

applications, it uses PVM as the base infrastructure and hence poses the 

restriction of executing applications on PVM. 

Dome (Arabe et al.) supports reconfiguration of executing application in 

terms of changing the parallelism for the application. But the data that can 

be redistributed for reconfiguration have to be declared as Dome objects. 

Hence it is difficult to use Dome with third-party software like ScaLAPACK 

where native data is used for computations. Also Dome uses PVM as the 

underlying architecture and cannot be used for message passing 

applications. 

The work by Hofmeister supports reconfiguration in terms of dynamically 

replacing a software module in the application, moving a module to a 

different processor and adding or removing a module to and from the 

applications. But the package by Hofmeister only works on homogeneous 

systems. The work by Deconinck is similar to SRS in terms of the 

checkpointing API and the checkpointing infrastructure. Their checkpoint 

control layer is similar to our RSS in terms of managing the distributed data 

https://assignbuster.com/the-parallel-applications-for-distributed-systems/



The parallel applications for distribute... – Paper Example Page 12

and the protocols for communication between the applications and the 

checkpoint control layer is similar to ours. By using architecture-independent

checkpoints, the checkpoints used in their work are heterogeneous and 

portable. But the work by Deconick does not support reconfiguration of 

application in terms of varying the parallelism for the applications. 

The DyRecT (Godard et al.) framework for reconfiguration allows dynamic 

reconfiguration of applications in terms of varying the parallelism by adding 

or removing the processors during the execution of parallel application. The 

user-level checkpointing library in DyRecT also supports the specification of 

data distribution. The checkpoints are system-independent and MPI 

applications can use the checkpointing library for dynamic reconfiguration 

across heterogeneous systems. But DyRecT uses LAM MPI for implementing 

the checkpointing infrastructure to use the dynamic process spawning and 

fault detection mechanisms provided by LAM. Hence DyRecT is mainly 

suitable for workstation clusters and not distributed and Grid systems where 

the more secure MPICH-G is used (Foster and Karonis). Also, DyRecT requires

the machines to share a common file system and hence applications cannot 

be migrated and reconfigured to distributed locations that do not share 

common file systems. 

The DRMS (Naik et al.) checkpointing infrastructure uses DRMS programming

model to support checkpointing and restarting parallel applications on 

different number of processors. It uses powerful checkpointing mechanisms 

for storing and retrieving checkpoint data to and from permanent storage. It 

is the closest related work to SRS in that it supports a flexible checkpointing 

API for reconfiguring MPI message passing applications implemented on any 

https://assignbuster.com/the-parallel-applications-for-distributed-systems/



The parallel applications for distribute... – Paper Example Page 13

MPI implementations to be reconfigured on heterogeneous systems. But 

DRMS also does not support migrating and restarting applications on 

environments that do not share common file systems with the environments 

where the applications initially executed. A more recent work by Kale et. al 

achieves reconfiguration of MPI-based message passing programs. But 

reconfiguration is achieved by using a MPI implementation called AMPI that is

less suitable to Grid systems than MPICH-G. 

Conclusions and Future Directions 

In this paper, a checkpointing infrastructure for developing and executing 

malleable and migratable parallel applications across heterogeneous sites 

was explained. The SRS API has limited number of functions for seamlessly 

enabling parallel applications malleable. The uniqueness of the SRS system 

is achieved by the use of IBP distributed storage infrastructure. Discussion 

was shown to evaluate the overhead incurred by the applications and the 

times for storing, reading and redistributing checkpoints. The discussion 

shows that SRS can enable reconfigurability of the parallel applications with 

limited overhead. 

One of the future main goals may be to use precompiler technologies to 

restore the execution context and to relieve the user from having to make 

major modifications in his program to provide malleability of his applications.

Other future investigations can include support for checkpointing files, 

complex pointers and structures and to provide support for different kinds of 

applications. 

https://assignbuster.com/the-parallel-applications-for-distributed-systems/



The parallel applications for distribute... – Paper Example Page 14

Although the design of the checkpointing framework supports migration of 

heterogeneous environments, the current implementation stores the 

checkpoint data as raw bytes. This approach can lead to misinterpretation of 

the data by the application if, for example, the data is stored on a Solaris 

system and read by a Linux machine. This is due to the different byte 

orderings and floating point representations followed on different systems. 

It may be useful to extend the RSS daemon to make it fault-tolerant by 

periodically checkpointing its state so that the RSS service can be migrated 

across sites. Presently, all the processes of the parallel application 

communicate with a single RSS deamon. This may pose a problem for the 

scalability of the checkpointing system, especially when large number of 

machines are involved. The future plan may be to implement a distributed 

RSS system to provide scalability. 

References 
LAM-MPI. http://www. lam-mpi. org. 

I. Foster and C. Kesselman eds. The Grid: Blueprint for a New Computing 

Infrastructure. Morgan Kaufmann, ISBN 1-55860-475-8, 1999. 

M. Elnozahy, L. Alvisi, Y. M. Wang, and D. B. Johnson. A Survey of Rollback-

Recovery Protocols in Message Passing Systems. Technical Report CMU-CS-

96-181, School of Computer Science, Carnegie Mellon University, Pittsburgh, 

PA, USA, October 1996. 

L. Dikken, F. van der Linden, J. J. J. Vesseur, and P. M. A. Sloot. DynamicPVM: 

Dynamic Load Balancing on Parallel Systems. In Wolfgang Gentzsch and Uwe

https://assignbuster.com/the-parallel-applications-for-distributed-systems/



The parallel applications for distribute... – Paper Example Page 15

Harms, editors, Lecture notes in computer science 797, High Performance 

Computing and Networking, volume Proceedings Volume II, Networking and 

Tools, pages 273-277, Munich, Germany, April 1994. Springer Verlag. 

James S. Plank. An Overview of Checkpointing in Uniprocessor and 

Distributed Systems, Focusing on Implementation and Performance. 

Technical Report UT-CS-97-372, 1997. 

T. Tannenbaum and M. Litzkow. The condor distributed processing system. 

Dr. Dobb’s Journal, pages 40-48, February 1995. 

G. A. Geist, J. A. Kohl, and P. M. Papadopoulos. CUMULVS: Providing Fault-

Tolerance, Visualization and Steering of Parallel Applications. International 

Journal of High Performance Computing Applications, 11 (3): 224-236, August

1997. 

M. Elnozahy, L. Alvisi, Y. M. Wang, and D. B. Johnson. A Survey of Rollback-

Recovery Protocols in Message Passing Systems. Technical Report CMU-CS-

96-181, School of Computer Science, Carnegie Mellon University, Pittsburgh, 

PA, USA, October 1996. 

S. H. Russ, B. K. Flachs, J. Robinson, and B. Heckel. Hector: Automated Task 

Allocation for MPI. In Proceedings of IPPS ’96, The 10th International Parallel 

Processing Symposium, pages 344-348, Honolulu, Hawaii, April 1996. 

V. K. Naik, S. P. Midkiff, and J. E. Moreira. A checkpointing strategy for 

scalable recovery on distributed parallel systems. In Super Computing (SC) 

’97, San Jose, November 1997. 

https://assignbuster.com/the-parallel-applications-for-distributed-systems/



The parallel applications for distribute... – Paper Example Page 16

A. Jeong and D. Shasha. P. Linda 2. 0: A Transactional/Checkpointing 

Approach to Fault Tolerant Linda. In Proceedings of the 13th Symposium on 

Reliable Distributed Systems, pages 96-105. IEEE, 1994. 

A. Baratloo, P. Dasgupta, and Z. M. Kedem. CALYPSO: A Novel Software 

System for Fault-Tolerant Parallel Processing on Distributed Platforms. In 

Proc. of the Fourth IEEE Intel Symp. on High Performance Distributed 

Computing (HPDC-4), pages 122-129, August 1995. 

L. V. Kale, S. Kumar, and J. DeSouza. A Malleable-Job System for Timeshared 

Parallel Machines. In 2nd IEEE/ACM International Symposium on Cluster 

Computing and the Grid (CCGrid 2002), May 2002. 

E. Godard, S. Setia, and E. White. DyRecT: Software Support for Adaptive 

Parallelism on NOWs. In in IPDPS Workshop on Runtime Systems for Parallel 

Programming, Cancun, Mexico, May 2000. 

I. Foster and N. Karonis. A Grid-Enabled MPI: Message Passing in 

Heterogeneous Distributed Computing Systems. In Proceedings of 

SuperComputing 98 (SC98), 1998 

J. N. C. Arabe, A. B. B. Lowekamp, E. Seligman, M. Starkey, and P. Stephan. 

Dome: Parallel Programming in a Heterogeneous Multi-User Environment. 

Supercomput-ing, 1995. 

A. Agbaria and R. Friedman. Starfish: Fault-Tolerant Dynamic MPI Programs 

on Clusters of Workstations. In In the 8th IEEE International Symposium on 

High Performance Distributed Computing, pages 167-176, August 1999. 

https://assignbuster.com/the-parallel-applications-for-distributed-systems/



The parallel applications for distribute... – Paper Example Page 17

G. Stellner. CoCheck: Checkpointing and Process Migration for MPI. In 

Proceedings of the 10th International Parallel Processing Symposium (IPPS 

’96), pages 526-531, Honolulu, Hawaii, 1996. 

G. Deconinck and R. Lauwereins. User-Triggered Checkpointing: System-

Independent and Scalable Application Recovery. In Proceedings of 2nd IEEE 

Symposium on Computers and Communications (ISCC97), pages 418-423, 

Alexandria, Egypt, July 1997. 

C. Hofmeister and J. M. Purtilo. Dynamic Reconfiguration in Distributed 

Systems : Adapting Software Modules for Replacement. In Proceedings of the

13th International Conference on Distributed Computing Systems, 

Pittsburgh, USA, May 1993. 

https://assignbuster.com/the-parallel-applications-for-distributed-systems/


	The parallel applications for distributed systems
	Introduction
	References


