
Aspect oriented 
software 
development

https://assignbuster.com/aspect-oriented-software-development/
https://assignbuster.com/aspect-oriented-software-development/
https://assignbuster.com/aspect-oriented-software-development/
https://assignbuster.com/


Aspect oriented software development – Paper Example Page 2

The implementation of software applications using GOAD techniques results 

in a better implementation structure which has an impact on many important

software qualities such as enhanced risibility and reduced complexity. In 

turn, these software qualities lead to an improved software development 

lifestyle and, hence, to better software. This report introduces to 

management and software development staff to the concepts of aspect- 

orientation software development. 

It presents why aspect-orientation is needed in modern software 

development and what its contributions are to the improvement of software 

design and implementation structure. The report also highlight 

AAAtechnologydetails though without probing much in particular, as it 

present the various concepts of GOAD. After reading this introduction, the 

reader will understand what GOAD is about, know its key concepts and 

terminology engaged to elaborate 2. Introduction As software systems 

becomes more complex developers use new technologies to help manage 

development. The development of large and complex software applications 

is a challenging task. Apart from the enormous complexity of the software's 

desired functionality, software engineers are also faced with many other 

acquirement that are specific to the software development lifestyle. 

Requirements such as risibility, robustness, performance, believability, etc. 

Re requirements about the design and the implementation of the software 

itself, rather than about its functionality. Nevertheless, these non-functional 

requirements cannot be neglected because they contribute to the overall 

software quality, which is eventually perceived by the users of the software 

application. For example, a better believability will ensure that future 

https://assignbuster.com/aspect-oriented-software-development/



Aspect oriented software development – Paper Example Page 3

maintenance tasks to the implementation can be carried out relatively easily

and consequently also with fewer errors. 

Building software applications that adhere to all these functional and non-

functional requirements is an ever more complex activity that requires 

appropriate programming languages and development paradigms to 

adequately address all these requirements throughout the entire software 

development lifestyle. To cope with this ever-growing complexity of software

development, computersciencehas experienced a continuous evolution of 

development paradigms and programming languages. In the early days, 

software was directly implemented in machine-level assembly languages, 

leading to highly omelet implementations for even simple software 

applications. 

The introduction of the procedural and functional programming paradigms 

provided software engineers with abstraction mechanisms to improve the 

design and implementation structure of the software and reduce its overall 

complexity. An essential element of these paradigms is the ability to 

structure the software in separate but cooperating modules (e. G. 

Procedures, functions, etc. ). The intention is that each of these modules 

represents or implements a well-identified subpart of the software, which 

renders the individual modules better reusable and evolvable. 

Modern software development often takes place in the object-oriented 

programming paradigm that allows to further enhance the software's design 

and implementation structure through appropriate object-oriented modeling 

techniques and language features such as inheritance, delegation, 

https://assignbuster.com/aspect-oriented-software-development/



Aspect oriented software development – Paper Example Page 4

encapsulation and polymorphism. Aspect-oriented programming languages 

and the entire aspect-orientation paradigm are a next step in this ever 

continuing evolution of programming languages and development paradigms

to enhance software development and hence, improve overall software 

quality 3. 0 

Fundamental ideas underlying aspects and aspect-oriented software 

development The notion behind aspects is to deal with the issue of tangling 

and scattering. According to Ian Somerville (2009), tangling occurs when a 

module in a system includes code that implements different system 

requirements and scattering occurs when implementation of a single concern

(logical requirement or set of requirements) is scattered across several 

components in a program. 3. 1 What an Aspect is. Aspect is an abstraction 

which implements a concern. Aspects are completely specification of where 

it should be executed. 

Unlike other abstractions like methods, you cannot tell by examining 

methods where it will be called from because there is clear separation 

between the definition and of the abstraction and its use. With Aspects, 

includes a statement that defines where the aspect will be woven into the 

program. This statement is known as a pinpoint. Below is an example of a 

pinpoint (Ian Somerville, 2006) before: call (public void update* (.. )) This 

implies that before the execution of many method whose starts with update, 

followed by any other sequence of characters, the code in the aspect after 

the induct definition should be executed. 

https://assignbuster.com/aspect-oriented-software-development/



Aspect oriented software development – Paper Example Page 5

The wildcat (*) matches any string characters that are allowed in the 

identifiers. The code to be executed is known as the advice and is 

implementation of the cross-cutting concern. In an example below of an 

aspect authentication (let's say for every change of attributes in a payroll 

system requires authentication), the advice gets a password from person 

requesting the change and checks that it matches the password of currently 

logged -in user. If not user is logged out and update does not proceed. 

Aspect authentication before: call (public void update* (.. // this is a pinpoint 

{ // this is the advice that should be executed when woven into // the 

executing system into tries = O; string swearword = Password. Get ( tries ) ; 

while (tries < 3 && userPassword thisuser. password ( ) ) { // allow 3 tries to 

get the password right tries = tries +1 ; userPassword = Password. Get 

( tries ) ; if (userPassword thisuser. password ( then //if password wrong, 

assume user has forgotten to logout System. Logout (thisUser. uid) ; } // 

authentication (Ian Sommerville, et al. , 2006) 3. 2 Aspect Terminology 

Advice: the code implementing a concern 

Pinpoint: defines specific program events with which advice should be 

associated (I. E. , woven into a program at appropriate Join points) Events 

may be method calls/ returns, accessing data, exceptions, etc. Weaving: 

incorporation of advice code into the program (via source code 

preprocessing, link-time weaving, or execution time weaving) 4. 0 Why 

Separation of Concerns a good guiding principle for Software Development 

Separation of concerns is a key principle of software design and 

implementation. Concerns reflect the system requirements and the priorities 

of the system stakeholders. 

https://assignbuster.com/aspect-oriented-software-development/



Aspect oriented software development – Paper Example Page 6

Some examples of concerns are performance, security, specific categorized 

in several types. Functional concerns, quality of service concerns, Policy 

concerns, System concerns and Organizational concerns. Functional: related 

to specific functionality to be included in a system. Quality of service: related

to the nonfunctional behavior of a system (e. G. , performance, reliability, 

availability). System: related to attributes of the system as a whole (e. G. , 

maintainability, configurability). Organizational: related to 

organizationalgoalsand priorities (e. G. , staying within budget, using existing

software assets). 

In other areas concerns has been categorized according to different areas of 

interest or properties I. E. High level implies security and quality of service, 

Caching and buffering are Low level while Functional includes features, 

business rules and Non Functional (systematic) implies synchronization, 

transaction management. By reflecting the separation of concerns in a 

program, there is clear traceability from requirements to implementation. 

The principle of separation of concerns states that software should be 

organized so that each program element does one thing and one thing only. 

In this case it means each aerogram element should therefore be 

understandable without reference to other elements. Program abstractions 

(subroutines, procedures, objects, etc) support the separation of concerns. 

Core concerns relate to a system's primary purpose and are normally 

localized within separate procedures, objects, etc. And other concerns tend 

to scatter and cross multiple elements. These cross-cutting concerns are 

managed by aspect since they cannot be localized resulting in problems 

when changes are required due to tangling and scattering. 

https://assignbuster.com/aspect-oriented-software-development/



Aspect oriented software development – Paper Example Page 7

Separation of concerns provides modular dependency between aspects and 

components. For instance we would like to maintain a system that manages 

payroll and personnel functions in our organization, and there is a new 

requirement to create a log of all changes to an employee's data by 

management. It would mean that changes will include in payroll, number of 

deduction, raises, employee's personal data and sass of many other 

information associated with employee. This implies that there are several 

codes that will require changes. 

This process could be tedious and you might end up forgetting changing 

other codes as well even not understanding each and every code. With 

aspects you old deal with a particular element only. In this case there won't 

be redundancy of multiple codes doing the same thing. An update function 

could be implemented that would be called whenever you would want to 

implement a particular method. 5. 0 Aspect-oriented Approach 5. 1 

Requirement Engineering In requirements engineering there is need to 

identify requirements for the core system and the requirements for the 

system extensions. 

Viewpoints are a way to separate the concerns ofdifferent stakeholdersthat 

are core and secondary concerns. Each viewpoint represents the 

requirements of related groups of stakeholder. The requirements are 

organized according to stakeholder viewpoint then they are analyses to 

discover related requirements that appear in all or most viewpoints. These 

represent the core functionality of the system. There could be other 

viewpoint requirements that are specific to that viewpoint these then can be 

implemented as extensions to the core functionality. 

https://assignbuster.com/aspect-oriented-software-development/



Aspect oriented software development – Paper Example Page 8

These requirements (secondary functional requirements) often reflect the 

needs of that viewpoint and may not share there are non-functional 

requirements that are cross-cutting concerns. These generate requirements 

of to some or all viewpoint for instance requirements for security, 

performance and cost. 5. 2 Software Design Aspect Oriented Design is the 

process of designing a system that makes use of aspects to implement the 

cross-cutting concerns and extensions that are identified during the 

requirements engineering process. 

ADD focuses on the explicit representation of cross-cutting concerns using 

adequate design languages. ADD languages consist of some way to specify 

aspects, how aspects are to be composed and a set of well-defined 

composition semantics to describe the details of how aspects are to be 

integrated. (Chitchat, Awls Rashes, Pete Sawyer, Alexandra Garcia, Monica 

Pinto Larson, Jotter Beaker, Bedim Ticonderoga, Skibobs Clarke, Andrew 

Jackson, 2005) Like in object orientation, several aspect-oriented extensions 

to ML design language to represent aspect-oriented concepts at the design 

level. 

One of these ML extensions is ATOM. ADD in ML requires a means of 

modeling aspects using ML stereotypes. Is an approach of specifying the Join 

points where the aspect advice is to be composed with the core system. The 

high-level statement of requirements provides a basis for identifying some 

system extensions that may be implemented as aspects. Developing these in

more details to identify further extensions and understanding the 

functionality required is to identify a set of use cases associated with each 

viewpoint. Each use case represents an aspect. 

https://assignbuster.com/aspect-oriented-software-development/



Aspect oriented software development – Paper Example Page 9

Extension use cases naturally fit the core and extensions architectural model

of system. Jacobsen and Eng (2004)) 5. 2. 1 Aspect-oriented Design Process 

Below is fugue 1 that illustrate the design activities of generic aspect-

oriented design process Core system design is where you design the system 

architecture to support the core functionality of the system. Aspect 

identification and design Starting with the extensions identified in the system

requirements, you should analyses these to see if they are aspects in 

themselves or if they should be broken down into several aspects. 

Composition design At this stage, you analyses the core system and aspect 

designs to discover where the aspects should be composed with the core 

system. Essentially, you are identifying the Joint points in a program at which

aspects will be woven Conflict analysis and resolution Conflicts occur when 

there is a pinpoint clash with different aspects specifying that they should be

composed at the same point in the aerogram Name design is the essential to

avoid the problem of accidental pinpoints. 

These occur when, at some program Join point, the name accidentally 

matches that in a pinpoint pattern. The advice is therefore unintentionally 

applied at that point. 5. 3 Programming The goal of aspect-oriented 

programming is to provide an advance modularization scheme to separate 

the core functionality of software system from system-wide concerns that cut

across the implementation of this core functionality. (Kim Mess and Tom 

Tour©, 2007) APP must address both what the programmer can say and owe

the computer system will realize the program in a program system. 

https://assignbuster.com/aspect-oriented-software-development/



Aspect oriented software development – Paper Example Page 10

APP system: mechanisms are conceptually straight forward and have 

efficient implementations. 5. 3. 1 Joint Point Model A Join point model defines

the kinds of Join points available and how they are accessed and used. They 

are specific to each aspect-oriented programming language for instance 

Aspects. In Aspects, Joint point are defined by grouping them into pinpoints. 

5. 3. 2 Pinpoint A pinpoint is a predicate that matches Join points. A pinpoint 

is a relationship 'Join point Boolean', where the domain of the relationship is 

all possible Join points. 3. 3 Advice 5. 4 Advantages and Disadvantages of 

APP APP promotes clear design and risibility by enforcing the principles of 

abstraction and separation of concerns. APP explicitly promotes separation of

concerns, unlike earlier development paradigms. This separation of concerns

provides cleaner assignment of responsibilities, higher modularization and 

easier system evolution, and should thus lead to software systems which are

easier to maintain. The process is to collect scattered concerns into compact 

structure units, namely the aspects. 

On the other hand, APP cannot be elegantly applied to every possible 

situation. . 0 Validation and verification Validation and Verification is the 

process of demonstrating that a program meets the real needs of its 

stakeholders and meets its specification. Validation or testing is used to 

discover defects in the program or to demonstrate that the program meets 

its requirements. Statement verification techniques focus on manual or 

automated analysis of the source code. Like any other systems, aspects-

oriented systems can be tested as black-boxes using the specification to 

derive the tests. 

https://assignbuster.com/aspect-oriented-software-development/



Aspect oriented software development – Paper Example Page 11

However, program source code is problematic. Aspects also introduce 

additional testing (Ian Somerville (2006)) 6. 1 Testing problems with aspects 

To inspect a program in a conventional language effectively, you should be 

able to read it from right to left and top to bottom. Aspects make this as the 

program is a web rather than a sequential document. One can't tell from the 

source code where an aspect will be woven and executed. Flattening an 

aspect-oriented program for reading is practically impossible 6. Challenges 

with Aspect-oriented Systems One of the limitations of APP is that it is not 

supported by default on any programming platform. Although it seems to be 

gaining popularity, its implementation has been undertaken by third parties 

as extensions to development framework. This has resulted in some level of 

disparity on the features being implemented as some of the implementations

only implement specific features making it difficult to use such frameworks 

in some situations in addition to creating some confusion over the feature. 

AAA programs can be " black-box tested" using requirements to design the 

tests, but program inspections and " white-box testing" can be problematic, 

since you can't always tell from the source code alone where an aspect will 

be woven and executed. 7. 0 Recommendations Adopting Aspect Oriented 

Software development will reduce repetitions of coding or Component 

maintenance and reuse has a great impact to the company. On the part of 

cost, the company can determine whether it is easy to maintain its systems 

or not. 

Using other development paradigm can be cumbersome hence increasing 

tangling and scattering. System performance will also be affected in such a 

way that there could be more codes doing the same thing. GOAD concepts 

https://assignbuster.com/aspect-oriented-software-development/



Aspect oriented software development – Paper Example Page 12

reduce redundancy and increase system performance. All functional and 

non-functional concerns are dealt with in GOAD. On implementation of 

security, Design flaws and code errors or bugs old be some of the causes of 

security flaws in software. Unlike SOD, GOAD approach made Software 

Development easy with the separation of concerns leading to modularization

in reuse. 

https://assignbuster.com/aspect-oriented-software-development/


	Aspect oriented software development

