C4 summary sheet

ASSIGN BUSTER

simplify algebraic fractions by factorising and cancelling factorse. g .
$(3 x+6) /\left(x^{\wedge} 2-4\right)=3(x+2) /(x+2)(x-2)=3 /(x-2)$ add and subtract by finding a common denominatore. g. simplify $2 y / x(x+3)+1 / y^{\wedge} 2(x+3)+x / y$

- find the common denominator (take all of the individual bits on the bottom row and multiply them together $)=x y^{\wedge} 2(x+3)$
-make each of the fractions have the common denominator at the bottom by multiplying the whole fraction by different individual bits
$=2 y^{\wedge} 3 / y^{\wedge} 2 x(x+3)+x / y^{\wedge} 2 x(x+3)+x^{\wedge} 2 y(x+3) / y^{\wedge} 2 x(x+3)$
-combine into one fraction
$=2 y^{\wedge} 3+x-x^{\wedge} 3 y-3 x^{\wedge} 2 y / x y^{\wedge} 2(x+3)$ algebraic divisiondegree - the highest power of x in the polynomial (e. g. the degree of $4 x^{\wedge} 5+6 x^{\wedge} 2-3 x-1$ is 5) divisor - this is the thing you're dividing by (e. g. if you divide $x^{\wedge} 2+4 x-3$ by $x+2$, the divisor is $x+2$)
quotient - the but you get when you divide by the divisor (not including the remainder $) f(x)=q(x) d(x)+r(x)$ - way of writing a polynomialq $(x)=$ quotient $d(x)=$ divisor
$r(x)=$ remainderpartial fractions=opposite of adding fractions
if the fraction is over two different brackets then the partial fraction will be in the form $A /$ bracket $1+B /$ bracket 2
if the fraction is over three different brackets then the partial fraction will be in the form A/brackt1 +B/bracket2 +C/bracket3
if the fraction is over one bracket squared and another bracket then the partial fraction will be in the form $A / b r a c k e t 1$ squared $+B /$ bracket 1
+ C/bracket 2 difference of two squares denominatorse. g. $21 x-2 / 9 x^{\wedge} 2-4=$ $21 x-2 /(3 x-2)(3 x+2)=A /(3 x-2)+B /(x+2)$ parametric equationssplit up x and y into separate equations
cartesian equation $=$ single equation linking x and y
parametric $=x$ and y are defined separately with a third variable called a parameter usually t or thetause parametric equations to find where graphs intersectintersect the x axis,$y=0$
intersect the y axis,$x=0$
intersect the line $a y=b x+c$, plug the parametric equations into the values of y and x and then rearrange and find the values of the parameter which you then plug into the parametric equations to find the corresponding x and y valuesconverting parametric equations into cartesian equations`1rearrange one of the equations to make the parameter the subject, then substitute the result into the other equation
or
2-if your equations involve trig functions, use trig identities to eliminate the parameterexamples1-e. g. $\mathrm{x}=\mathrm{t}+1 \mathrm{y}=\mathrm{t}$ ^2-1
$t=x-1$
$y=(x-1)^{\wedge} 2-1$
$y=x^{\wedge} 2-2 x$

2-e. g. $x=1+\sin (x), y=1-\cos (2 x)$
use trig function $\cos (2 x)=1-2 \sin ^{\wedge} 2(x)$
$y=1-\cos (2 x)=1-(1-2 \sin 2(x))=2 \sin ^{\wedge} 2(X)$
$\sin (x)=x-1$ so $y=2 \sin ^{\wedge} 2(x)$
$y=2(x-1)^{\wedge} 2=2 x^{\wedge} 2-4 x+2$
binomial expansionformula in the book
used for when the power is a fraction or is negative
if the constant isn't 1 then you need to factorise it first (e.g. $(3-x)^{\wedge} 4$ will
become $(3(1-x / 3))^{\wedge} 4$ which becomes $81(1-1 / 3 x)^{\wedge} 4$ validityif the power is positive, the expansion is valid for all values of x
if the power is negative or a fraction, the expansion of $(p+q x)^{\wedge} n$ is only valid when $|q x / p|<1$ e. g. $1(1+x)^{\wedge}-1$ is valid or when $|x|<1$ e. g. $2(1+2 x)^{\wedge} 1 / 3$ is valid if $|2 x|<1=2|x|<1=|x|<1 / 2 d y / d x$ of $\sin (x)=\cos (x) d y / d x$ of $\cos (x)=-$ $\sin (x) d y / d x$ of $\tan (x)=\sec ^{\wedge} 2(x)$ rule for $d y / d x$ of trig functionsonly work in radiansuse the chain rule with $\sin / \cos /$ tane. $g 1$ differentiate $y=\cos (2 x)+$ $\sin (x+1)$
$y=\cos (2 x)$ becomes $y=\cos (u), u=2 x$
$d y / d u=-\sin (u) d u / d x=2$ so $d y / d x=-2 \sin (2 x)$
$y=\sin (x+1)$ becomes $y=\sin (u), u=x+1$
$d y / d u=\cos (u) d u / d x=1$ so $d y / d x=\cos (x+1)$
therefore $d y / d x=\cos (x+1)-2 \sin (2 x)$
e. g. 2 find $d y / d x$ when $x=\tan (3 y)$
$x=\tan (u), u=3 y$ so $d x / d u=\sec ^{\wedge} 2(u) d u / d y=3$
$d x / d y=3 \sec ^{\wedge} 2(3 y)$ so $d y / d x=1 / 3 \sec ^{\wedge} 2(3 x)=1 / 3 \cos ^{\wedge} 2(3 y)$
$d y / d x$ of inverse reciprocal functionscome from the quotient rule differentiation of $1 / \sin (x), 1 / \cos (x)$ and $1 / \tan (x) d y / d x$ of $\operatorname{cosec}(x)=-$ $\operatorname{cosec}(x) \cot (x) d y / d x$ of $\sec (x)=\sec (x) \tan (x) d y / d x$ of $\cot (x)=-\operatorname{cosec}^{\wedge} 2(x)$ use the chain, product and quotient rules with cosec, sec and cote. g. 1 find $d y / d x$ of $y=\sec \left(2 x^{\wedge} 2\right)$
$=$ CHAIN RULE as it is a product of a product
so $y=\sec (u) u=2 x^{\wedge} 2$
$d y / d u=\sec (u) \tan (u) d u / d x=4 x$
therefore $d y / d x=4 x \sec \left(2 x^{\wedge} 2\right) \tan \left(2 x^{\wedge} 2\right)$
e. g. 2 find $d y / d x$ of $y=e^{\wedge} x(\cot (x))$
$=$ PRODUCT RULE as it is a product of two functions
$u=e^{\wedge} x v=\cot (x)$
$d u / d x=e^{\wedge} x d v / d x=-\operatorname{cosec}^{\wedge} 2(x)$
$d y / d x=u(d v / d x)+v(d u / d x)$
$=\mathrm{e}^{\wedge} \mathrm{x}\left(\cot (\mathrm{x})-\operatorname{cosec}^{\wedge} 2(\mathrm{x})\right)$
differentiating parametric equationsdy/dx= $d y / d t / d x / d t$ can use this to find the gradient of tangents and normal (neg reciprocal of tangent)implicit differentiationimplicit relation $=$ an equation thats in the form $f(x, y)=g(x, y)$ rather then $y=f(x)$ steps for implicit differentiation1. differentiate the $x^{\wedge} n$ values with respect to x as usual
2. differentiation the $y^{\wedge} n$ values by $d / d y$ so the result is $d / d y$ of $f(y)$ multiplies by $\mathrm{dy} / \mathrm{dx}$
3. use the product rule to do ones with x and y
4. rearrange the equation to make $d y / d x$ the subject
can use this to find the gradient
intergration of $\sin (x)=-\cos) x+$ cintegration of $\cos (x)=\sin (x)+$ chow to integrate trig functionsfollow the rule given
if the x of the starting equation's x has a coefficient that isn't 1 , you just divide by the coeffiecnt when you integratesome fractions integrate to InS $f^{\wedge}-1(x) / f(x) d x=\ln |f(x)|+$ cthis works for some trig functions tootan $(x)=$
$\sin (x) / \cos (x)$
$d y / d x(\cos (x))=-\sin (x)$ therefore $S \sin (x) / \cos (x)=-\ln |\cos (x)|+c$
$S \cot (x) d x=\ln |\sin (x)|+c$
$S \operatorname{cosec}(x) d x=-\ln |\operatorname{cosec}(x)+\cot (x)|+c$
$S \sec (x) d x=\ln |\sec (x)+\tan (x)|$
chain rule in reversefind $S 6 x^{\wedge} 5\left(e^{\wedge} x^{\wedge} 6\right) d x$
if you differentiate the bracket you would get $6 x^{\wedge} 5\left(e^{\wedge} x^{\wedge} 6\right)$ therefore as only differentiating the bracket gets this answer so the answer is the bracket $=e^{\wedge} x^{\wedge} 6+$ cintegration by substitutionon products of two functions

1. find $d u / d x$ and rewrite it so $d x$ is on its on
2. rewrite the original integral in terms of u and du
3. integrate as normal
for definite integrals you have to change the limitsintegration by partsS
$u(d v / d x) d x=u v-S v(d u / d x)$ integrate $\ln (x)$ rewrite at $1 x \ln (x)$
$u=\ln (x) d v / d x=1$
$\mathrm{du} / \mathrm{dx}=1 / \mathrm{x} v=\mathrm{x}$
therefore $S \ln (x)=x \ln (x)-S x(1 / x) d x=x \ln (x)-S 1 d x=x \ln (x)-x$
+cintegrating partial fractionssplit into partial fractions
when you integrate each fractions they are all going to be Aln(bracket1)
+Bln(bracket2) ... +C
which you can rewrite as $\ln (($ bracket1)^A(bracket2)^B) +cdifferential
equations- solving by integrationwrite the differential equation in the form
$d y / d x=f(x) g(y)$
rewrite the equation in the form $1 / g(y) d y=f(x) d x$
integrate both sides
rearrange into a nice form and remember to +cstarting conditions occur whent $=0$ decreasing $=-k$ (rate of decrease is proportional to number of...)vectorshave a size and a direction
scalars are just quantities
length of the vector is the magnitudea, 2a, 3aparallel as they are just multiplied by a scalarposition vectorswhere the point liesa unit vector isany vector with a magnitude of 1 uniti and j unitsi is the x axis j is the y axis
(k is the z axis)column vectorsway of writing a vectorpythagoras' theoremfind vector magnitudes the magnitude of a vector is written | a the distance of a point from the originsquare root of ($x^{\wedge} 2+y^{\wedge} 2+z^{\wedge} 2$)distance between pointssquare root of $(x 1-x 2)^{\wedge} 2+(y 1-y 2)^{\wedge} 2+(z 1-z 2)^{\wedge} 2$ equation of a line through a point and parallel to another vectora straight line which goes through point A and is parallel to vector B has the equation
$r=A+t B$
where $r=$ position vector of a point on the line
A= position vector of point Aequation of a line passing through two pointsr= $\mathrm{c}+\mathrm{t}(\mathrm{d}-\mathrm{c})$ point of intersection of two linesif two lines intersect then there will be a value of t for each equation which makes the same r you know if they are parallel if they are multiples of each other if there is no point of intersection then they are skewscalar producta. $\mathrm{b}=$ । a|| b| $\cos (x)$
used to calculate the angle between two lines
rearranges to $\cos (x)=\mathrm{a} . \mathrm{b} /|\mathrm{a}||\mathrm{b}|$
two lines that are perpendicular, the angle will be 90 therefore $\cos (90)=0$
if they are parallel it would be $\cos (0)$ so $a \cdot b=|a||b| a$.
ba1b1+a2b2+a3b3using the scalar product to find the angle between two vectorse. g. find the angle between the vectors $-i-6 j$ and $4 i+2 j+8 k$
$a=-i-6 j b=4 i+2 j+8 k$
scalar product of the vectors
a. $b=(-1 \times 4)+(-6 \times 2)+(0 \times 8)=-4-12+0=-16$
magnitude $=|a|=\operatorname{root} 37|b|=\operatorname{root} 84$
$\cos (x)=-16 /$ root $37 x$ root84 so $x=106.7$ degresif you are finding the angle between two linesyou would use the b bit from $r=a+$ tbproving lines are perpendicularscalar product $=0$ ONC4 SUMMARY SHEET SPECIFICALLY FOR YOUFOR ONLY\$13. 90/PAGEOrder Now
