Determining the concentration of an aqueous solution of sodium hydroxide, naoh.

ASSIGN BUSTER

Method 1- Titration •For the titration, it is necessary to dilute the Sodium Hydroxide so that it is an easier concentration to titrate. Using a 25 cm 3 pipette, washed out with some of the NaOH solution, transfer 25 cm 3 of the solution to a 250 cm 3 volumetric flask, and fill to the line with distilled water. The alkali will now have a concentration of $0.1 \mathrm{~mol} \mathrm{dm}-3$.

- In the titration, the NaOH will be in the burette, and will be titrated into HCl in a conical flask: $\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) ? \mathrm{NaCl}(\mathrm{aq})+\mathrm{H} 2 \mathrm{O}(\mathrm{I})$ The reaction is 1: 1 between NaOH and HCl , so a solution of $0.2 \mathrm{~mol} \mathrm{dm}-3$ should be used. -Rinse a 25 cm 3 pipette out with some of this solution, and then transfer 25 cm 3 of it to a clean conical flask. •Add 3 drops of phenolphthalein.
-Wash a burette with some of the diluted alkali and then fill the burette to the top of the graduations. - Titrate the alkali into the acid until the indicator in the flask has turned a pink colour. •Repeat the process until two titres are obtained within 0.1 cm 3 of each other, as well as a rough titre.
e. g. Average titre $=24.0 \mathrm{~cm} 3$. Moles of acid used $=5 \times 10-3$ Acid neutralised by 24.80 cm 3 NaOH Therefore concentration of $\mathrm{NaOH}=(5 \times 10-3$ x 1000)/ 24.
$8=0.2016129 \ldots$ Diluted by factor of 10 , so: $0.2016129 \ldots \times 10=2.01 \mathrm{~mol}$ dm-3. Method 2- ? H of neutralisation •Transfer 25 cm 3 of NaOH into a polystyrene cup with a lid, and put the cup into a plastic beaker.
-Take the temperature of the contents of the cup using a thermometer accurate to 0.1 cm 3 . •Add excess HCl and replace the lid of the cup. \cdot Stir the contents constantly until the maximum temperature has been reached.

Record the temperature change. •Use the formula $q=-(m c ? t)$ to work out the energy change of the quantities used.
-Work out the number of moles that reacted, then find the energy change that would have occurred had 1 mole been used. •This gives ? H of neutralisation. •Use this to work out the concentration of NaOH . Safety -Wear safety glasses so no concentrated acid or alkali gets in your eyes. References •Essential A2 Chemistry for OCR- Ted Lister and Janet Renshaw - NaOH Hazcard •Chemistry Data Book

