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Basic Definitions and Theorems about ARIMA models First we define some 

important concepts. A stochastic process (c. q. 

probabilistic process) is defined by a T-dimensional distribution function. 

Time Series Analysis – ARIMA models – Basic Definitions and Theorems about

ARIMA models marginal distribution function of a time series (V. I. 1-1) 

Before analyzing the structure of a time series model one must make sure 

that the time series are stationary with respect to the variance and with 

respect to the mean. First, we will assume statistical stationarity of all time 

series (later on, this restriction will be relaxed). Statistical stationarity of a 

time series implies that the marginal probability distribution is time-

independent which means that: bullet the expected values and variances are

constant stationary time series – expected values and variances are constant

(V. 

I. 1-2) where T is the number of observations in the time series; bullet the 

autocovariances (and autocorrelations) must be constant stationary time 

series – autocovariances (and autocorrelations) are constant (V. I. 1-3) where

k is an integer time-lag; bullet the variable has a joint normal distribution 

f(X1, X2, … 

, XT) with marginal normal distribution in each dimension tationary time 

series – normality assumption (V. I. 1-4) If only this last condition is not met, 

we denote this by weak stationarity. Now it is possible to define white noise 

as a stochastic process (which is statistically stationary) defined by a 

marginal distribution function (V. I. 
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1-1), where all Xt are independent variables (with zero covariances), with a 

joint normal distribution f(X1, X2, … , XT), and with variance and expected 

value of white noise (V. I. 

1-5)It is obvious from this definition that for any white noise process the 

probability function can be written as probability density function of white 

noise V. I. 1-6) Define the autocovariance as autocovariance definition (V. I. 

1-7) or autocovariance definition (V. 

I. 1-8) whereas the autocorrelation is defined as autocorrelation definition (V.

I. 1-9) In practice however, we only have the sample observations at our 

disposal. Therefore we use the sample autocorrelations sample 

autocorrelation (V. 

I. 1-10) for any integer k. Remark that the autocovariance matrix and 

autocorrelation matrix associated with a stochastic stationary process 

autocovariance matrix (V. I. 1-11) autocorrelation matrix (V. 

I. 1-12) is always positive definite, which can be easily shown since a linear 

ombination of the stochastic variable linear combination of stochastic 

variable (V. I. 1-13) has a variance of variance of linear combination of 

stochastic variable (V. I. 1-14) which is always positive. 

This implies for instance for T= 3 that (V. I. 1-15) or (V. I. 1-16) Bartlett 

proved that the variance of autocorrelation of a stationary normal stochastic 

process can be formulated as (V. I. 
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1-17) This expression can be shown to be reduced to (V. I. 1-18) if the 

autocorrelation coefficients decrease exponentially like (V. I. 1-19) Since the 

autocorrelations for i > q (a natural number) are equal to zero, expression 

(V. 

I. -17) can be shown to be reformulated as (V. I. 1-20) which is the so called 

large-lag variance. Now it is possible to vary q from 1 to any desired integer 

number of autocorrelations, replace the theoretical correlations by their 

sample estimates, and compute the square root of (V. 

I. 1-20) to find the standard deviation of the sample autocorrelation. Note 

that the standard deviation of one autocorrelation coefficient is almost 

always approximated by (V. I. 1-21) The covariances between 

autocorrelation coefficients have also been deduced by Bartlett (V. 

I. 1-22) which is a good indicator for dependencies between autocorrelations.

Remind therefore that inter-correlated autocorrelations can seriously distort 

the picture of the autocorrelation function (ACF c. q. autocorrelations as a 

function of a time-lag). It is however possible to remove the intervening 

correlations between Xt and Xt-k by defining a partial autocorrelation 

function (PACF) The partial autocorrelation coefficients are defined as the 

last coefficient of a partial autoregression equation of order k (V. 

I. 1-23) It is obvious that there exists a relationship between the PACF and 

the ACF since (V. I. 1-23) can be rewritten as (V. I. 

https://assignbuster.com/time-series-analysis-arima-models-basic-definitions-
and-theorems-about-arima-models/



 Time series analysis – arima models – ba... – Paper Example  Page 5

1-24) or (on taking expectations and dividing by the variance) (V. I. 1-25) 

Sometimes (V. I. 1-25) is written in matrix formulation according to the Yule-

Walker relations (V. I. 

1-26) or simply (V. I. 1-27) Solving (V. I. 1-27) according to Cramer’s Rule 

yields (V. 

I. 1-28) Note that the determinant of the numerator contains the same 

elements as the determinant of the denominator, except for the last column 

that has been replaced. A practical numerical estimation algorithm for the 

PACF is given by Durbin (V. I. 1-29) with (V. I. 

1-30) The standard error of a partial autocorrelation coefficient for k ; gt; p 

(where p is the order of the autoregressive data generating process; see 

later) is given by V. I. 1-31) Finally, we define the following polynomial lag-

processes (V. I. 1-32) where B is the backshift operator (c. 

q. BiYt = Yt-i) and where (V. I. 1-33) These polynomial expressions are used 

to define linear filters. By definition a linear filter (V. I. 

1-34) generates a stochastic process (V. I. 1-35) where at is a white noise 

variable. (V. I. 

1-36) for which the following is obvious (V. I. 1-37) We call eq. (V. I. 1-36) the

random-walk model: a model that describes time series that are fluctuating 

around X0 in the short and in the long run (since at is white noise). 
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It is interesting to note that a random-walk is normally distributed. This can 

be proved by using the definition of white noise and computing the moment 

generating function of the random-walk (V. I. 1-38) (V. I. 

1-39) from which we deduce (V. I. 1-40) (Q. E. D. 

). A deterministic trend is generated by a random-walk model with an added 

constant (V. I. 1-41) The trend can be illustrated by re-expressing (V. I. 1-41) 

as (V. 

I. 1-42) where ct is a linear deterministic trend (as a function of time). The 

linear filter (V. I. 1-35) is normally distributed with (V. 

I. 1-43) ue to the additivity property of eq. (I. III-33), (I. III-34), and (I. III-35) 

applied to at. 

Now the autocorrelation of a linear filter can be quite easily computed as (V. 

I. 1-44) since (V. I. 1-45) and (V. 

I. 1-46) Now it is quite evident that, if the linear filter (V. I. 1-35) generates 

the variable Xt, then Xt is a stationary stochastic process ((V. I. 1-1) – (V. 

I. 1-3)) defined by a normal distribution (V. I. 1-4) (and therefore strongly 

stationary), and a autocovariance function (V. I. 1-45) which is only 

dependent on the time-lag k. 

The set of equations resulting from a linear filter (V. I. 1-35) with ACF (V. I. 1-

44) are sometimes called stochastic difference equations. These stochastic 
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difference equations can be used in practice to forecast (economic) time 

series. 

The forecasting function is given by (V. I. 1-47) On using (V. I. 1-35), the 

density of the forecasting function (V. I. 

1-47) is (V. I. 1-48) where (V. I. 1-49) is known, and therefore equal to a 

constant term. 

Therefore it is obvious that (V. I. 1-50) (V. I. 1-51) The concepts defined and 

described above are all time-related. This implies for instance that 

autocorrelations are defined as a function of time. 

Historically, this time-domain viewpoint is preceded by the frequency-

domain viewpoint where it is assumed that time series consist of sine and 

cosine waves at different frequencies. In practice there are both advantages 

and disadvantages to both viewpoints. Nevertheless, both should be seen as 

complementary to each other. (V. I. 

1-52) for the Fourier series model (V. I. 1-53) In (V. I. 1-53) we define (V. I. 

1-54) The least squares estimates of the parameters in (V. I. 1-52) are 

computed by (V. I. 1-55) In case of a time series with an even number of 

observations T = 2 q the same definitions are applicable except for V. 

I. 1-56) It can furthermore be shown that (V. I. 1-57) (V. I. 1-58) such that (V. 

I. 1-59) (V. I. 1-60) Obviously (V. I. 1-61) It is also possible to show that (V. 

I. 1-62) If (V. I. 1-63) then (V. I. 
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1-64) and (V. I. 1-65) and (V. I. 1-66) and (V. 

I. 1-67) and (V. I. 1-68) which state the orthogonality properties of sinusoids 

and which can be proved. Remark that (V. I. 

1-67) is a special case of (V. I. 1-64) and (V. I. 1-68) is a special case of (V. I. 

1-66). Particularly eq. (V. I. 1-66) is interesting for our discussion in regard to 

(V. 

I. 1-60) and (V. I. 1-53), since it states that sinusoids are independent. If (V. I.

1-52) is redefined as (V. I. 1-69) then I(f) is called the sample spectrum. The 

sample spectrum is in fact a Fourier cosine transformation of the 

autocovariance function estimate. Denote the covariance-estimate of (V. I. 

1-7)by the sample-covariance (c. q. the numerator of (V. I. 1-10)), the 

complex number i, and the frequency by f, then (V. I. 

1-70) On using (V. I. 1-55)and (V. I. 1-70) it follows that (V. 

I. 1-71) which can be substituted into (V. I. 1-70) yielding (V. I. 

1-72) Now from (V. I. 1-10) it follows (V. I. 1-73) and if (t – t’) is substituted by

k then (V. I. 

1-72) becomes (V. I. -74) which proves the link between the sample 

spectrum and the estimated autocovariance function. On taking expectations

of the spectrum we obtain (V. I. 1-75) for which it can be shown that (V. 

I. 1-76) On combining (V. I. 1-75) and (V. I1. 
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1-76) and on defining the power spectrum as p(f) we find (V. I. 1-77) It is 

quite obvious that (V. I. 1-78) so that it follows that the power spectrum 

converges if the covariance decreases rather quickly. The power spectrum is 

a Fourier cosine transformation of the (population) autocovariance function. 

This implies that for any theoretical autocovariance function (cfr. he 

following sections) a respective theoretical power spectrum can be 

formulated. Of course the power spectrum can be reformulated with respect 

to autocorrelations in stead of autocovariances (V. I. 1-79) which is the so-

called spectral density function. Since (V. 

I. 1-80) it follows that (V. I. 1-81) and since g(f) > 0 the properties of g(f) are 

quite similar to those of a frequency distribution function. Since it can be 

shown that the sample spectrum fluctuates wildly around the theoretical 

power spectrum a modified (c. 

q. smoothed) estimate of the power spectrum is suggested as (V. I. 1-82) 
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