
Data structures: final 
exam review essay 
sample

https://assignbuster.com/data-structures-final-exam-review-essay-sample/
https://assignbuster.com/data-structures-final-exam-review-essay-sample/
https://assignbuster.com/data-structures-final-exam-review-essay-sample/
https://assignbuster.com/


Data structures: final exam review essay... – Paper Example Page 2

•Depth: length of the unique path from root to node 

•Height: length of the longest path from the node to a leaf •Keep children in 

a linked list 

•Preorder traversal: work at the node is done before its children are 

processed •Postorder traversal: work at a node is performed after its 

children are evaluated •Binary tree: no node can have more than two 

children 

oAverage depth is O(rootN), O(logN) for binary search tree 

oCan maintain references to children cuz there’s only 2 

•Example of a binary tree: expression tree 

oLeaves are operands, other nodes contain operators 

oInorder traversal: recursively print left child, then parent, then right •O(N) 

oPostorder traversal: recursively print left subtree, right subtree, then 

operator → O(N) 

oPreorder traversal: print operator, then recursively print the left and right 

subtrees 

oConstructing an expression tree from a postfix expression: read one symbol

at a time; if operand, create a one-node tree and push it onto a stack. If 

operator, pop two trees T1, T2 from stack, and form a new tree whose root is

the operator, and whose left and right children are T2 and T1; push new tree 

onto stack •Binary search tree: binary tree with the property that for every 

node X, the value of all items in its left subtree are < X and the value of all 

items in the right subtree are > X oContains: Uses O(logN) stack space 

ofindMin, findMax: traverse all the way left or right from the root oinsert: 

traverse down tree as would with contains, stick it at the end oremove: easy 

https://assignbuster.com/data-structures-final-exam-review-essay-sample/



Data structures: final exam review essay... – Paper Example Page 3

if leaf or has one child; if two children; replace data in node with smallest 

data of right subtree, and recursively delete that node oLazy deletion: if 

expected number of deletions is small, just mark the node as deleted but 

don’t actually do anything; small time penalty as depth doesn’t really 

increase oRunning time of all operations on a node is O(depth), and the 

average depth is O(logN) oIf input is presorted, inserts takes O(N^2) since 

there are no left children •AVL Trees 

oBinary search tree with a balance condition: ensure depth is O(logN) by 

requiring that for every node in the tree, the height of the left and right 

subtrees can differ by at most 1 (height of empty tree is -1) oMinimum 

number of nodes S(h) of an AVL tree of height h is S(h) = S(h-1) + S(h-2) + 1

where S(1) = 2 

oAll operations O(logN) except possibly insertion 

oRebalancing: 

•Violation after inserting into left subtree of left child, or right subtree of 

right child → single rotation •Violation after inserting into right subtree of left

child or left subtree of right child → double rotation •Splay Trees 

oAmortized O(logN) cost per operation 

oMove accessed nodes to root 

oZig-zag: node is a left child and its parent is a right child or vice versa oZig-

zig: node and its parent are both left or right children •Level-order traversal: 

all nodes at depth d processed before any node at d+1; not done recursively,

it uses a queue instead of stack recursion •Set interface: unique operations 

are insert, remove, and search oTreeset maintains order, basic operations 

https://assignbuster.com/data-structures-final-exam-review-essay-sample/



Data structures: final exam review essay... – Paper Example Page 4

take O(logN) worst case •Map interface: collection of entries consisting of 

keys and their values oKeys are unique, but several keys can map to the 

same values oSortedMap: keys maintained in sorted order 

oOperations include isEmpty, clear, size, containsKey, get, put oNo iterator, 

but: 

• Set keySet() 

•Collection values() 

•Set entrySet() 

oFor an object of type Map. Entry, available methods include •KeyType 

getKey() 

•ValueType getValue() 

•ValueType setValue(ValueType newValue) 

•TreeSet and TreeMap implemented with a balanced binary search tree 

Ch. 5 Hashing 

•Hashing is a technique for inserting, deleting and searching in O(N) 

average, so findMin, findMax and printing the table in order aren’t supported 

•Hash function maps a key into some number from 0 to TableSize – 1 and 

places it in the appropriate cell •If the input keys are integers, then usually 

Key (mod TableSize) works •Want to have TableSize be prime 

•Separate chaining: maintain a list of all elements that hash to the same 

value •Load factor = average length of a list = number of elements in 

table/size oIn an unsuccessful search, number of nodes to examine is O(load)

on average; successful search requires ~ 1 + (load/2) links to be traversed 

•Instead of having linked lists, use h(x) = (hash(x) + f(i)) (mod Tablesize) 

https://assignbuster.com/data-structures-final-exam-review-essay-sample/



Data structures: final exam review essay... – Paper Example Page 5

where f is the collision resolution strategy oGenerally, keep load below . 5 for

these “ probing hash tables” oLinear probing: f(i) = i; try cells sequentially 

with wraparound •Primary clustering: even if table is relatively empty, blocks

of occupied cells form which makes hashes near them bad oQuadratic 

probing; f(i) = i^2 

•No guarantee of finding an empty cell if table is > ½ full (or before if size 

isn’t prime) •Secondary clustering: elements hashed to same position probe 

same alternative cells oDouble Hashing: f(i) = ihash_2(x) so probe hash_2(x),

2hash_2(x), … •Hash_2(x) = R – x (mod R) with R prime < size is good 

oRehash: build new table, twice as big, hash everything with new function 

•O(N): N elements to rehash, table size about 2N, but actually not that bad 

because it’s infrequent (must have been N/2) insertions prior to last rehash, 

so it essentially adds a constant cost to insert •Can rehash when half full, 

after failed insertion, or at certain load •Standard Library has HashSet and 

HashMap (they use separate chaining) •HashTable useful for: 

o1. Graph theory problem where nodes have names instead of numbers o2. 

Symbol table: keeping track of declared variables in source code o3. 

Programs that play games 

o4. Online spell checkers 

•But they require an estimate of the number of elements to be used 

Ch. 7 Sorting 

•Bubble sort: O(N^2) but O(N) if presorted 

•Insertion sort: p passes, at each pass move element p left until in right 

https://assignbuster.com/data-structures-final-exam-review-essay-sample/



Data structures: final exam review essay... – Paper Example Page 6

place oO(N^2) average, O(N) on presorted 

•Shellsort: increment sequence h1, h2, …, h_t 

oAfter a phase, all elements spaced h_k apart are sorted 

oWorst-case O(N^2) 

oHibbard’s sequence 1, 3, 7,…, 2^k – 1 gives worst-case O(N^3/2) 

•Heapsort: build a minHeap in O(N), deleteMin N times so O(NlogN) for all 

cases oUses an extra array so O(N) space 

•Mergesort: O(NlogN) worst case, but uses O(N) extra space/memory 

•Quicksort: use median of left/right/center elements, sort elements smaller 

and larger than pivot, then merge oPartitioning strategy: move i right, skip 

over elements smaller than pivot, move j left, skip over elements larger than 

pivot oWorst-case pivot is smallest element = O(N^2), happens on near-

sorted data oBest-case pivot is middle = O(NlogN) 

oAverage-case O(NlogN) 

Ch. 8 The Disjoint Set Class 

•The equivalence problem is to check for any a, b if a~b 

•Find: returns the name of the equivalence class containing a given element 

•Add a relation a~b: perform find on a, b then union the classes •Impossible 

to do both operations in constant worst-case, but can do either •Quick-find: 

array entry of node is name of its class; makes union O(N) •We start with a 

forest of singleton trees; the array representation contains the name of the 

parent, with -1 for no parent oUnion: merge two trees by making the parent 

link of one tree’s root link to the root of the other tree. O(1) oFind is 

proportional to depth of the node so worst-case is O(N), or O(mn) for m 

https://assignbuster.com/data-structures-final-exam-review-essay-sample/



Data structures: final exam review essay... – Paper Example Page 7

consecutive operations oAverage case depends on the model but is 

generally O(mn) 

•Union-by-size: make the smaller tree a subtree of the larger, break ties any 

way oDepth of a node is never more than logN → find is O(logN) oHave the 

array entry of each root contain the negative of the size of its tree, so 

initially all -1. After a union, the new size is the sum of the old •Requires no 

extra space 

oMost models show M operations is O(M) average time 

•Union-by-height: maintain height instead of size of tree, and during unions 

make the shallow tree a subtree of the deeper one oAlso guarantees depth =

O(logN) 

oEasy: height only goes up (by 1) when equally deep trees are unioned 

oStore the negative of the height, minus an additional 1 (again start at -1) 

•Problem: worst case O(MlogN) occurs frequently; if there are many more 

finds than unions the running time is worse than the quick-find algorithm 

•Path Compression 

oAfter find(x), every node on the path from x to root has its parent changed 

to the root oM operations requires at most O(MlogN) time; unknown average 

oNot compatible with union by height since it changes heights •When we use

both union-by-size and path compression, almost linear worst case 

oTheta(M*Ackerman’s function), where Ackerman’s is only slightly faster 

than constant, so it’s not quite linear oBook proves any M union/find 

operations is O(Mlog*N) where log*N = number of times needed to apply log 

to N until N 

https://assignbuster.com/data-structures-final-exam-review-essay-sample/


	Data structures: final exam review essay sample

