
Locality in computer 
archtecture

https://assignbuster.com/locality-in-computer-archtecture/
https://assignbuster.com/locality-in-computer-archtecture/
https://assignbuster.com/


Locality in computer archtecture – Paper Example Page 2

It is a package of three ideas: (1 ) computational processes pass through a 

sequence of locality sets and reference only within them, (2) the locality sets

can be inferred by applying a distance unction to a program’s address trace 

observed during a backward window, and (3) memory management Is 

optimal when it guarantees each program that Its locality sets will be present

in high-speed memory. Working set memory management was the first 

exploitation of this principle; it prevented thrashing while maintaining near 

optimal system throughput, and eventually It enabled virtual memory 

systems to be reliable, dependable, and transparent. 

Many researchers and system designers rallied around the effort to 

understand locality and achieve this outcome. The principle expanded well 

beyond virtual memory systems. Today it addresses computations that 

adapt to the neighborhoods In which users are situated, ways to Infer those 

neighborhoods by observing user actions, and optimizing performance for 

users by being aware of their neighborhoods. It has influenced the design of 

caches of all sorts, Internet edge servers, spam blocking, search engines, e-

commerce systems, email systems, forensics, and context-aware software. 

It remains a rich source of Inspirations for contemporary research In 

architecture, caching, Bayesian inference, forensics, web-based business 

processes, context-aware software, and network science. 1 . Introduction 

Locality of reference Is one of the cornerstones of computer science. It was 

born from efforts to make virtual memory systems work well. Virtual memory

was first developed in 1959 on the Atlas system at the University of 

Manchester. Its superior programming environment doubled or tripled 

programmer productivity. 

https://assignbuster.com/locality-in-computer-archtecture/



Locality in computer archtecture – Paper Example Page 3

But It was flunky, Its performance sensitive to the choice of replacement 

algorithm and to the ways compilers grouped code on to pages. Worse, when

It was coupled with multiprogramming, it was prone to thrashing, the near-

complete collapse of system throughput due to heavy paging. The locality 

principle guided us in designing robust replacement algorithms, compiler 

code generators, and thrashing-proof systems. It transformed virtual 

memory from an unpredictable to a robust technology that regulated itself 

dynamically and optimized throughput without user intervention. 

Virtual memory became such an engineering triumph that it faded into the 

memory with multithreading and multitasking that no one notices. The 

locality principle found application well beyond virtual memory. Today it 

directly influences the design of processor caches, disk controller caches, 

storage hierarchies, network interfaces, database systems, graphics display 

systems, human-computer interfaces, individual application programs, 

search engines, Web browsers, edge caches for Web based environments, 

and computer forensics. Tomorrow it may help us overcome our problems 

with brittle, unforgiving, unreliable, and unfriendly software. 

I will tell the story of this principle, starting with its discovery to solve a 

multimillion-dollar performance problem, through its evolution as an idea, to 

its widespread adoption today. My telling is highly personal because locality, 

and the attending success of ritual memory, was my focus during the first 

part of my career. 2. Manifestation of a Need (1949-1965) In 1949 the 

builders of the Atlas computer system at University of Manchester 

recognized that computing systems would always have storage hierarchies 

https://assignbuster.com/locality-in-computer-archtecture/



Locality in computer archtecture – Paper Example Page 4

consisting of at least main memory (RAM) and secondary memory (disk, 

drum). 

To simplify management of these hierarchies, they introduced the page as 

the unit of storage and transfer. Even with this simplification, programmers 

spent well over half their time planning and programming page transfers, 

then called overlays. In a move to enable programming productivity to at 

east double, the Atlas system builders therefore decided to automate the 

overlaying process. Their “ one-level storage system” (later called virtual 

memory) was part of the second-generation Atlas operating system in 1959 

[Killing]. It simulated a large main memory within a small real one. 

The heart of their innovation was the novel concept that addresses named 

values, not memory locations. The Scup’s addressing hardware translated 

CPU addresses into memory locations via an beatable page table map 

(Figure 1). By allowing more addresses than locations, their scheme enabled 

aerogramme to put all their instructions and data into a single address 

space. The file containing the address space was on the disk; the operating 

system copied pages on demand (at page faults) from that file to main 

memory. When main memory was full, the operating system selected a main

memory page to be replaced at the next page fault. 

The Atlas system designers had to resolve two performance problems, either

one of which could sink the system: translating addresses to locations; and 

replacing loaded pages. They quickly found a workable solution to the 

translation robber by storing copies of the most recently used page table 

entries in a small high speed associative memory, later known as the 

https://assignbuster.com/locality-in-computer-archtecture/



Locality in computer archtecture – Paper Example Page 5

address cache or the translation lakeside buffer. The replacement problem 

was a much more difficult conundrum. Because the disk access time was 

about 10, 000 times slower than the CPU instruction cycle, each page fault 

added a significant delay to a Job’s completion time. 

Therefore, minimizing page faults was critical to system performance. Since 

minimum faults means maximum inter-fault intervals, the ideal page to 

replace from main memory is he one that will not be used again for the 

longest time. To accomplish this, the Atlas Figure 1. The architecture of 

virtual memory. The process running on the CPU has access to an address 

space identified by a domain number d. A full copy of the the main memory. 

The page table PET[d] has an entry for every page of domain d. 

The entry for a particular page (I) contains a presence bit P indicating 

whether the page is in main memory or not, a usage bit U indicating whether

it has been accessed recently or not, a modified bit M indicating whether it 

has been written into or not, ND a frame number FAN telling which main 

memory page frame contains the page. Every address generated by the CPU

is decomposed into a page number part (I) and a line number part (x). The 

memory mapping unit (MUM) translates that address into a memory location 

as follows. It accesses memory location d+I, which contains the entry of 

page I in the page table PET[d]. 

If the page is present (P= l), it generates the memory location by 

substituting the frame number (f) for the page number (I). If it is not present 

(P= O), it instead generates a page fault interrupt that signals the operating 

yester to invoke the page fault handler routine (PH). The MUM also sets the 

https://assignbuster.com/locality-in-computer-archtecture/



Locality in computer archtecture – Paper Example Page 6

use bit (13= 1) and on write accesses the modified bit (M= l). The PH selects 

a main memory page to replace, if modified copies it to the disk in its slot of 

the address space file AS[d], copies page I from the address space file to the 

empty frame, updates the page table, and signals the CPU to retry the 

previous instruction. 

As it searches for a page to replace, the PH reads and resets usage bits, 

looking for unused pages. A copy of the most recent translations (from page 

to frame) is kept in the translation lakeside buffer (TTL), enabling the MUM to

bypass the page table lookup most of the time. System contained a “ 

learning algorithm” that hypothesized a loop cycle for each page, measured 

each page’s period, and estimated which page was not needed for the 

longest time. The learning algorithm was controversial. It performed well on 

programs with well-defined loops and poorly on many other programs. 

The controversy spawned numerous experimental studies well into the sass 

that sought to determine what replacement rules might work best over the 

widest possible range of programs. Their results were often contradictory. 

Eventually it became apparent that the volatility resulted from variations in 

compiling methods: the way in which a compiler grouped code blocks onto 

pages strongly affected the program’s performance under a given 

replacement strategy. Meanwhile, in the early sass, the major computer 

makers were drawn to multiprogramming virtual memory because of its 

superior programming environment. 

RCA, General Electric, Burroughs, and Univac all included virtual memory in 

their operating systems. Because a bad replacement algorithm could cost a 

https://assignbuster.com/locality-in-computer-archtecture/



Locality in computer archtecture – Paper Example Page 7

million dollars of lost machine time over the life of a system, hey all paid a 

great deal of attention to replacement algorithms. Nonetheless, by 1966 

these companies were reporting their systems were susceptible to a new, 

unexplained, catastrophic problem they called thrashing. Thrashing seemed 

to have nothing to do with the choice of replacement policy. It manifested as

a sudden collapse of throughput as the multiprogramming level rose. 

A thrashing system spent most of its time resolving page faults and little 

running the COP]. Thrashing was far more damaging than a poor 

replacement algorithm. It scared the daylights out of the computer makers. 

The more conservative IBM did not include virtual memory in its 360 

operating system in 1964. Instead, it sponsored at its Watson laboratory one 

of the most comprehensive experimental systems projects of all time. Led by

Bob operating system and used it to study the performance of virtual 

memory. (The term Mortal memory’ appears to have come from this project. 

By 1966 they had tested every replacement policy that anyone had ever 

proposed and a few more they invented. Many of their tests involved the use

bits built in to page tables (see Figure 1). By periodically scanning and 

resetting the bits, the replacement algorithm distinguishes recently 

referenced pages from others. Bellay concluded that policies favoring 

recently used pages performed better than other policies; LOUR (least 

recently used) replacement was consistently the best performer among 

those tested [Bellay]. 3. 

Discovery and Propagation of Locality Idea (1966-1980) In 1965, I entered 

my PhD studies at MIT in Project MAC, which was Just undertaking the 

development of Multicast. I was fascinated by the problems of dynamically 

https://assignbuster.com/locality-in-computer-archtecture/



Locality in computer archtecture – Paper Example Page 8

allocating scarce CPU and memory resources among the many processes 

that would populate future time-sharing systems. I set myself a goal to solve 

the thrashing problem and define an efficient way to manage memory with 

variable partitions. Solutions to these problems would be worth millions of 

dollars in recovered uptime of virtual memory operating systems. 

Little did I know that I would have to devise and validate a theory of program

behavior to accomplish this. I learned about the controversies over the 

viability of virtual memory and was baffled by the contradictory conclusions 

among the experimental studies. All these studies examined individual 

programs assigned to a fixed memory partition managed by a replacement 

algorithm. They shed no light n the dynamic partitions used in 

multiprogramming virtual memory systems. 

They offered no notion of a dynamic, intrinsic memory demand that would 

tell which pages of the program were essential and which were replaceable 

something simple like, “ this process needs p pages at time t. ” Such a 

notion was incompatible with the fixed- space policies everyone was 

studying. I began to speak of a process’s intrinsic memory demand as its “ 

working set”. The idea was that paging would be acceptable if the system 

could guarantee that the working set was loaded. I combed the experimental

studies looking for clues on how to measure a program’s working set. 

All I could find were data on lifetime curves (mean time between page faults 

as a function of average memory space allocated to a program). These data 

suggested that the mean working set size would be significantly smaller than

the full program size (Figure 2). In an “ Aha! ” moment in the waning days of 

https://assignbuster.com/locality-in-computer-archtecture/



Locality in computer archtecture – Paper Example Page 9

1966, inspired by Belays observations, I hit on the idea of defining a 

process’s working set as the set of pages used during a fixed-length 

sampling window in the immediate past. A working set could be measured by

periodically reading and resetting the use bits in a page table. 

The window had to be Figure 2. A program’s lifetime curve plots the mean 

time between page faults in a virtual memory system with a given 

replacement policy, as a function of the amount of space allocated to it by 

the system. It has an S-shape. The knee, defined as the point at which a line 

emanating from the origin is tangent to the curve, is the point of diminishing 

returns for increased memory allocation. The knee memory size is 

replacement policy can often do quite well with a relatively small memory 

allocation. 

A further significance of the knee is that it maximizes the ratio L(x)/x for all 

points on the curve. The knee is therefore the most desirable target for 

space allocation: it maximizes the mean time between faults per unit of 

space. In the virtual time of the process time as measured by the number of 

memory references made so that the measurement would not be distorted 

by interruptions. This led to the now-familiar notation: the working set W(t, T)

is the set of pages referenced in the virtual time interval of length T 

preceding time t [Deeding AAA]. 

By spring 1967, I had an explanation for thrashing [Deeding ebb]. Thrashing 

was the collapse of system throughput triggered by making the 

multiprogramming level too high. It was counterintuitive because we were 

used to systems that would saturate under heavy load, not shut down 

https://assignbuster.com/locality-in-computer-archtecture/



Locality in computer archtecture – Paper Example Page 10

(Figure 3). When memory was filled with working sets, any further increment

in the multiprogramming level would simultaneously push all loaded 

programs into a regime of working set insufficiency, where they paged 

excessively and could not use the CPU efficiently Figure 3. 

A computer system’s throughput Bobs completed per second) increases with

multiprogramming level up to a point. Then it decreases rapidly to 

throughput so low that the system appears to have shut down. Because 

everyone was used to systems hat gradually approach saturation with 

increasing load, the throughput collapse was unexpected. The thrashing 

state was “ sticky’ we had to reduce the ML somewhat below the trigger 

point to get the system to reset. No one knew how to predict the optimal ML 

or to find it without falling into thrashing. (Figure 4). 

I proposed a feedback control mechanism that would limit the 

multiprogramming level by refusing to activate any program whose working 

set would not fit within the free space of main memory. When memory was 

full, the operating system would defer programs requesting activation into a 

holding queue. Thrashing would be impossible with a working set policy 

(Figure 5). The working set idea was based on an implicit assumption that 

the pages seen in the backward window were highly likely to be used again 

in the immediate future. Was this assumption Justified? 

In discussions with Jack Dennis (MIT) and Less Bellay (MM), I started using 

the term “ locality’ for the observed tendency of programs to cluster 

references to small subsets of their pages for extended intervals. We could 

represent a program’s memory demand as a sequence of locality sets and 

https://assignbuster.com/locality-in-computer-archtecture/



Locality in computer archtecture – Paper Example Page 11

their holding times: , (Lie, Tit), This seemed natural because we knew that 

Al , TO), (LA, TO), (LA, TO), programmers planned overlays using diagrams 

that showed subsets and time phases (Figure 6). But what was strikingly 

interesting was that programs showed the locality behavior even when it was

not explicitly pre-planned. 

When measuring actual page use, we repeatedly observed many long 

phases with relatively small locality sets (Figure 7). Each program had its 

own distinctive pattern, like a epicenter. We saw two reasons that this would 

happen: (1) temporal clustering due to looping and executing within modules

with private data, and (2) spatial clustering due to related values hose 

reasons seemed related to the human practice of “ divide and conquer” 

breaking a large problem into parts and working separately on each. The 

locality bit maps captured someone’s problem-solving method in action. 

These underlying phenomena gave us confidence to claim that programs 

have natural sequences of locality sets. The working set sequence is a 

measurable approximation of a program’s intrinsic locality sequence. Figure 

4. The first rigorous explanation of thrashing argued from efficiency. The 

efficiency of a program is the ratio of its CPU execution time to its real time. 

Real time is longer because of page-fault delays. Denote a program’s 

execution time by E, the page fault rate by m, and the delay for one page 

fault by D; then the efficiency is E/(E +med) = 1/(1+MD). 

For typical values of D 10, 000 memory cycle times or longer the efficiency 

drops very rapidly for a small increase of m above O. In a memory filled with 

working sets (high efficiency), loading one more program can squeeze all the

https://assignbuster.com/locality-in-computer-archtecture/



Locality in computer archtecture – Paper Example Page 12

others, pushing everyone into working set insufficiency, collapsing efficiency.

Figure 5. A feedback control system can stabilize the multiprogramming 

level and revert thrashing. The amount of free space is monitored and fed 

back to the scheduler. The scheduler activates the next waiting program 

whenever the free space is sufficient for its working set. 

With such a control, we expected that the multiprogramming level would rise

to the optimal level and stabilize there. Figure 6. Locality sequence behavior 

diagrammed by programmer during overlay planning. Figure 7. Locality 

sequence behavior observed by sampling use bits during program execution.

Programs exhibit phases and localities naturally, even when overlays are not 

pre-planned. As we developed and refined our understanding of locality 

during the sass, I continued to work with many others to refine the locality 

idea and turn it into a behavioral theory of computational processes 

interacting with storage systems. 

By 1980 we articulated the principle as a package of three ideas: (1) 

computational processes pass through a sequence of locality sets and 

reference only within them, (2) the locality sets can be inferred by applying a

distance function to a program’s address trace observed during a backward 

window, and (3) memory management is optimal when it guarantees each 

program that its locality sets will be present in high- speed memory [Deeding

80]. A distance function D(x, t) measures the distance from a processor to an

object x at time t. 

Distances could be temporal, measuring the time since prior reference or 

access time within a network; spatial, measuring hops in a network or 

https://assignbuster.com/locality-in-computer-archtecture/



Locality in computer archtecture – Paper Example Page 13

address separation in a sequence; or cost, measuring any indiscretions 

accumulation of cost since prior reference. We said that object x is in the 

locality set at time t if the distance is less than a threshold: D(x, t) T. The 

storage system would examine throughput by caching locality sets close to 

the processor. By 1975, the performance of computing systems, and for 

predicting throughput, response time, and system capacity. 

In this model, each computing device of the real system is represented as a 

server with a queue; the server processes a Job for a random service time 

and then sends it to another server according to a probability distribution for 

the inter-server transition. The parameters of the model are the mean 

service times for each server, the mean number of times a Job visits a 

server, and the total number of Jobs circulating in the system. We began to 

use these models to study how to tell when a computing system had 

achieved its maximum throughput and was on the verge of thrashing. The 

results were eye-opening. 

In the simplest queuing model of a virtual memory system, there is a server 

representing the CPU and a server representing the paging disk. A Job cycles

between the CPU and the disk in the pattern (COP], Disk)* CPU meaning a 

series of CPU-Disk cycles followed by a CPU interval before completing. The 

number of CPU-Disk cycles is the number of page faults generated by the 

system’s replacement policy for the mean memory space allocated to Jobs. 

Queuing network theory told us that every server poses a potential 

bottleneck that imposes an upper limit on the system throughput; the actual 

bottleneck is the server with the smallest limit. 

https://assignbuster.com/locality-in-computer-archtecture/



Locality in computer archtecture – Paper Example Page 14

We discovered that the well-known thrashing curve (Figure 3) is actually the 

system doing the best it can as the paging- disk bottleneck worsens with 

increasing load (Figure 8. ) Figure 8. System throughput is constrained by 

both CPU and disk capacity. The CPU imposes a throughput limit of I/R, 

where R is the average running time of programs. The disk imposes a 

throughput limit of I/SF, where S is the mean time to do a page WAP and F is 

the total number of page faults in a Job. Thrashing is caused by precipitous 

drop of disk capacity as increased load squeezes space and forces more 

paging. 

The crossing point occurs when R= SF; since F= R/L (lifetime, L), the crossing

is at L= S, I. E. , when the mean time between faults equals the disk service 

time of a fault. Thus a control criterion is to allow N to increase until L 

decreases to S. Unfortunately, this was not very precise; we found 

experimentally that many systems were already in thrashing when L= S. 

Moreover, the memory size at which L= S may bear no relation to the highly 

desirable lifetime knee (Figure 2). Once we saw that thrashing is a 

bottleneck problem, we studied whether we could use bottleneck parameters

as criteria for load controls that prevented thrashing. 

One such criterion was called “ L= S” because it involved monitoring the 

mean lifetime L between page faults and adjusting load to keep that value 

near the paging disk service time S (Figure 8). This criterion was not very 

reliable: in some experiments, the system would already be thrashing when 

L= S. We found that a “ knee criterion” in which the system adjusted load to 

keep the observed lifetime near the knee lifetime (Figure 2) was consistently

ore reliable, even though knee lifetime was not close to S. Unfortunately, it is

https://assignbuster.com/locality-in-computer-archtecture/



Locality in computer archtecture – Paper Example Page 15

not possible to know the knee lifetime without running the program to 

completion. Y a Job is minimum. The memory allocation that does this is near

the knee (Figure 2). Our experimental studies of working-set windows near 

the knee of its lifetime curve yielded two useful results. One is that a 

program’s space-time is likely to be flat (near minimum) for a broad range of

window sizes. The picture shows how we defined a “ 10% confidence 

interval” of window sizes. Our theory told us that system throughput would 

be maximum when space-time for ACH Job is minimum, confirming our claim

that a knee criterion would optimize throughput. 

How well can a working-set policy approach this ideal? In a line of 

experimental studies we found that the interval of window values that put 

the space-time within 10% of its minimum was quite wide (Figure 9) 

[Graham]. Then we found that many workloads, consisting of a variety of 

programs, often had global T values that fell in all the 10% confidence 

intervals (Figure 10). This meant that a single, fixed, properly chosen value 

of T would cause the working set policy to maintain system throughput to 

within 10% of its optimum. The average deviation was closer to 5%. 

Figure 10. On comparing the 10% confidence intervals, we found that there 

was very often a global value of T that would put all programs within 10% of 

their space-time minima. The average deviation from minimum for this value

of T was closer to 5%. The conclusion was that systems with a properly 

adjusted, single global T value would achieve a working-set throughput 

within 5-10% of optimal. The final question was: is there another policy that 

would deliver a lower space-time per Job and therefore a higher optimum 

throughput? 

https://assignbuster.com/locality-in-computer-archtecture/



Locality in computer archtecture – Paper Example Page 16

Obviously, the VEIN (variable pace minimum [Upriver]) would do the Job; but 

it requires Lockheed. We discovered that the working set policy has exactly 

the same page-fault sequence as VEIN. Therefore the difference of space-

time between WAS and VEIN is completely explained by working-set “ 

overshooting” in its estimates of locality at the transitions between program 

phases. Indeed, VEIN unloads pages toward the ends of their phases after it 

sees they will not be referenced in the next phase. Working set cannot tell 

this until time T after the last reference. 

Experiments by Alan Smith to clip off these overshoots showed only a minor 

gain [Smith]. We concluded that it would be unlikely that anyone would find 

a non-Lockheed policy that was noticeably better than working set. Thus, by 

1976, our theory was validated. It demonstrated our original postulate: that 

working set memory management would prevent thrashing and would allow 

system throughput to be close to its optimum. The problem of thrashing, 

which originally motivated the working set theory, has occurred in other 

contexts as well as storage management. 

It can happen in any system where contention for a shared resource can 

overwhelm the processes’ abilities to move forward. It was observed in the 

various contenders could overwhelm the shared spectrum by retransmitting 

packets when they discovered their transmissions being inadvertently 

Jammed by other transmitters [Abramson]. A similar problem occurred in the

Ethernet, where it was solved by the “ back-off’ protocol that makes a 

transmitter wait a random time before retrying a transmission [Metcalf]. A 

similar problem occurred in database systems with the two-phase commit 

protocol [Thomas]. 

https://assignbuster.com/locality-in-computer-archtecture/



Locality in computer archtecture – Paper Example Page 17

Under this protocol, transactions try to collect locks on the records they will 

update; but if they find any scored already locked, they release all their locks

and try again. When too many transactions try to collect locks at the same 

time, they spend most of their time gathering and releasing locks. Although 

it is not critical to the theory and conclusions above, it is worth noting that 

the working-set analysis applies even when processes share pages. Among 

its design objectives, Multicast supported multiprocessor (multithreading) 

computations. The notions of locality and working sets had to apply in this 

environment. 

The obvious approach was to define a computation’s working set s the union 

of its constituent process working sets. This approach did not work well in 

the standard paging system architecture (Figure 1) because the use bits that

had to be Rod together were in different page tables and a high overhead 

would be needed to locate them. Fortunately, the idea of capability-based 

addressing, a locality- enhancing architecture articulated by colleagues 

Dennis and Van Horn in 1966 [Dennis], offered a solution (Figure 11). 

Working sets could be measured from the use bits of the set of object 

descriptors. 

The two-level mapping inherent in capability addressing is a principle in its 

own right. It solved a host of sharing problems in virtual memories of 

multiprocessor operating systems [Fairy]. It stimulated a line of 

extraordinarily fault tolerant commercial systems known as “ capability 

machines” in the sass [Wilkes 72, 79]. The architecture was adopted into the

run time environments of object oriented programming systems. The 

principle was applied to solving the problem of sharing objects in the Internet

https://assignbuster.com/locality-in-computer-archtecture/



Locality in computer archtecture – Paper Example Page 18

[Kahn]. Thus the situations in which working sets and localities of 

multithreading and distributed computations apply are ubiquitous today. 

Table 1 summarizes milestones in the development of he locality idea. Figure

1 1 . Two-level mapping enables sharing of objects without prior 

arrangements among the users. It begins with assigning a unique (over all 

time) identifying handle h to an object; objects can be of any size. Object h 

has a single descriptor specifying its status in memory: present (P = O or 1), 

used (U = O or 1), base address (B, defined only when P= l), and length (L). 

The descriptors of all known objects are stored in a descriptor table EDT, a 

hash table with the handle as a lookup key. 

When present, the object is assigned a block of contiguous addresses in 

main memory. Each computational process operates in its own memory 

domain (such as del or do), which is specified by an object table (TO), an 

adaptation of the page table (Figure 1). The object table, indexed by an 

object number (such as I or J), retrieves an object’s access code (such as 

raw) and handle. The memory mapping unit takes an address (I, x), looks up 

the descriptor for the handle in the descriptor table; finally it forms the 

actual memory address b+x provided that x does not exceed the object’s 

size a. 

Any number of processes can share h, simply by adding entries pointing to h 

as invention in their object tables. Those processes can use any local name (I

or J) they desire. If the system needs to relocate the object in memory, it can

do so by updating the descriptor (in the descriptor table). All processes will 

get the correct mapping information immediately. Working sets can be 

https://assignbuster.com/locality-in-computer-archtecture/



Locality in computer archtecture – Paper Example Page 19

measured from the use bits (U) in the descriptor table. 4. Adoption of 

Locality Principle (1967-present) The locality principle was adopted as an 

idea almost immediately by operating systems, database, and hardware 

architects. 

https://assignbuster.com/locality-in-computer-archtecture/


	Locality in computer archtecture

